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Abstract

The Makridakis M6 Financial Duathalon competition builds on prior M-competitions that focus on the

properties of point and probabilistic forecasts of random variables by also evaluating investment decisions

in financial markets. In particular, the M6 competition evaluates both forecasts and investment outcomes

associated with the analysis of a large group of financial time series variables. Given the importance of

return and risk forecasting when making investment decisions, a natural question in this context concerns

what sorts of methods and models are available for said forecasting, and were used by participants of the

competition. In this survey, we discuss such methods and models, with specific focus on the construction

of financial time series forecasts using approaches designed for both both discrete and continuous time

setups, and using both small and large (high dimensional and/or high frequency) datasets. Examples

covered range from simple random walk type models of returns to parametric GARCH and nonparametric

integrated volatility methods for forecasting volatility (risk). We also present the results of a novel

empirical illustration that underscores the difficulty in forecasting financial returns, even when using

so-called big data.
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1. Introduction

In the 25 years since the release of the acclaimed book entitled A Non-Random Walk Down Wall Street by

Lo and MacKinlay (1999), the finance and forecasting fields have benefited greatly from the development

of an impressive array of new methods, models, and tools designed to aid in the construction of forecasts

useful for investing in the financial markets. These developments have not only been spurred on by the

convincing arguments made by Lo, MacKinlay, and many others that not all markets evolve over time

like a “drunk man walking”, but also by the tremendous increase in the amount of data available with

which to model and forecast financial time series. In much of this survey, we summarize a number of

advances made over this time period for modelling and forecasting using datasets that are high frequency

and high dimensional datasets (e.g. “big data”) as well as using more traditional datasets that may

contain relatively few variables and/or observations. For the latter type of dataset, there are a number

of often rather simple methods that have been used for modelling and forecasting financial variables for

many decades. We also give shrift to such methods, but our focus is primarily on more recent methods.

Why is forecasting so important when discussing investing in finance? The reason for this is that

much of the investment world utilizes modern quantitative investment management, and quantitative

investment management equates with data-driven decision making in the markets. For discussions of

quantitative equity portfolio management and quantitative portfolio optimization see Rasmussen (2003)

and Chincarini and Kim (2006). This sort of management and optimization makes use of a variety of

models and methods to characterize equities, fixed income products, currencies, commodities, and a whole

host of other structured financial instruments. These models and methods are designed to solve problems

related to asset pricing and hedging, risk analytics, and portfolio optimization, and in contexts where

the goal is to allocate assets and optimize portfolios, forecasting key quantities like risk and return is

important.

As discussed above, in this survey we focus on models and methods used for forecasting. These

include simple approaches based on the use of judgement and surveys, and well as simple models such

as historical averages, random walks, and autoregressive regressions. Another simple approach that we

mention is that based on so-called technical analysis, which uses charts to assess market conditions. The

relative trade-offs associated with using models of judgement versus quantitative models is discussed in

Makridakis et al. (2024).

Needless to say, though, much interest in recent years has centered on the development of more complex

methods and models that fully take into account to availability of large high dimensional datasets that

1



may contain ultra-high frequency observations such as stock price data on every trade made on a particular

company. In addition to being used to construct high frequency measures of returns, such datasets are

used, for example, to construct estimates of daily (unobserved) volatility by summing up intra-daily

volatility (risk) measurements made every 1, 2, or 5 minutes, for example. Models and methods designed

to be implemented in these sorts of data-rich environments that are discussed in the sequel include

two types - those based on “discrete modeling” approaches and those based on “continuous modelling”

approaches. Broadly speaking, “discrete modelling approaches” are those designed for data that are

assumed to be discrete, in the sense that the time interval between observations is not assumed to go to

zero when deriving asymptotic properties of the models. Alternatively, ‘continuous modelling” approaches

are those designed for data that are assumed to be continuous, in the sense that the time interval between

observations is assumed to go to zero when deriving asymptotic properties of the models.

Some of the ‘discrete modeling’ approaches that we discuss include time varying parameter models

and big data or machine learning methods based on as factor models, neural networks, random forests,

the elastic net, and the least absolute shrinkage and selection operator. Some of the “continuous mod-

eling” approaches that we discuss include realized volatility and other jump and noise robust measures

of integrated volatility. These measures are nonparametric, as they do not require the specification of an

underlying model. We also discuss various continuous time model of return and (stochastic) volatility

including geometric Brownian motion, the classical Cox-Ingersoll-Ross model (Cox et al., 1985), and a

variety of stochastic volatility models.

The rest of the paper is organized as follows. We begin with a very brief discussion of the importance

of forecasting when carrying out financial investment, in Section 2. We then discuss methods and models

for forecasting returns in Section 3, and approaches to forecasting volatility in Section 4. Methods

for evaluating forecasts and investment performance are discussed in Section 5, and a small empirical

illustration is given in Section 6. Finally, concluding remarks are gathered in Section 7.

2. The Role of Forecasting in Finance

Financial forecasting is instrumental in constructing optimal investment portfolios and helps to inform the

pricing of individual assets. Modern portfolio theory (MPT), due to Markowitz (1952), and the Capital

Asset Pricing Model (CAPM) are two fundamental frameworks that use expected returns and risks as

inputs, helping market participants make investment decisions. Forecasting in finance is important, for

example, because estimates of expected returns and future risks are frequently derived from forecasts.

MPT offers a framework for building and selecting portfolios depending on an investor’s risk tolerance
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and the expected performance of assets. The MPT investment process takes estimates of individual asset

returns, volatilities, and their correlations as given, along with constraints on investment choices (e.g.

turnover constraints), to perform a mean-variance optimization (i.e. selecting portfolio weights) that

results in a portfolio yielding either: (i) the maximum possible expected return for a given level of risk

or (ii) the smallest risk possible for a given level of expected returns (see Fabozzi et al. (2002)). It is

worth stressing that the primitives of this investment process (e.g. the expected returns and volatilities of

individual assets) are unobservable objects and thus have to be estimated beforehand. Common estimators

of expected returns and volatility are the historical mean and standard deviation of returns, respectively,

as discussed in Miccolis and Goodman (2012). However, estimates based solely on historical returns

data can aggregate information from very different economic and market regimes, potentially resulting in

forecasts that do not accurately reflect any specific environment. A natural solution to this problem is

to incorporate external predictor information, such as macroeconomic indicators and market conditions,

into models for expected returns and volatilities. Given recent increases in the scope and availability

of data, integrating external predictors in these models has become more common, more feasible, and

more valuable. Additionally, data-rich environments have enabled and served as motivation for the use

of machine learning algorithms that can process vast quantities of data and adapt to changing market

dynamics more effectively than many traditional ‘data-poor’ models. We return to this discussion of

how investors can leverage these advanced techniques to improve their predictions of future returns and

volatilities in Sections 3 and 4.

Asset pricing theories offer an alternative method for calculating expected returns of individual assets

or classes. For example, the CAPM argues that the excess return of an asset (expected returns minus the

risk-free rate) is proportional to the equity premium (expected market return minus the risk-free rate).

The proportionality constant is called ‘beta’ and is a measure of an asset’s risk relative to that of the

market. One can use this model to estimate expected returns via a two-pass regression, as discussed in

Fama and MacBeth (1973) (see also Bartholdy and Peare (2003)), by using the historical average of the

equity premium as a proxy for the expected equity premium. Alternatively, one can form a forecast of

the expected equity premium to be subsequently used in the CAPM. The methods and challenges related

to the forecasting of the equity premium are themselves the subject of many comprehensive studies (see

Goyal and Welch (2003), Rapach and Zhou (2013), and Goyal et al. (2023)). We return to these issues in

the following Section.

Ultimately, regardless of one’s investment framework, quantitative asset management fundamentally
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requires expectations of future returns and risks. Asset managers must anticipate future market volatility,

economic conditions, and crucially, how these factors impact investments. Moreover, effective investment

and risk management strategies, such as diversification or hedging, depend on how expectations and

forecasts of return and risk evolve over time. With this in mind, we review a range of forecasting

approaches beginning with judgemental forecasting and simple time-series models, and moving on to

more data-intensive machine learning techniques suitable in the current age of “big data”.

3. Methods and Models for Forecasting Returns

As prefaced, returns forecasting is valuable on many fronts. It is fundamental for the efficient allocation of

capital by portfolio managers and other practitioners who use real-time forecasts in investment decisions,

such as adjusting asset weights in portfolios to optimize performance. Corporations also rely on forecasts

when making strategic decisions involving capital investments, mergers, and acquisitions. Additionally,

returns forecasting is crucial for validating and testing asset pricing models, which are used to determine

the intrinsic value of financial instruments and to help identify mis-priced assets.

A natural question to ask is whether it is possible to accurately forecast stock returns. Indeed, a

central question that features in many of the proposed forecasting methods and models is whether they

are able to outperform the forecasts implied by the historical averages and standard deviations of returns,

which often turns out to be an incredibly challenging task. In the context of returns, this is significant

because the historical average forecast is consistent with the idea that (log) stock prices follow a random

walk (with drift), and are therefore unpredictable. In this section, we discuss methods and models of

returns that are currently used in quantitative analysis by a whole host of active quantitative analysts

working in the financial markets. In the following section, we do the same for volatility (risk).

3.1. Simple Methods and Models of Returns

3.1.1. Judgmental Forecasts

Forecasters often consult their own experiences and opinions when forming forecasts of returns. Such

judgments might be the only information used to guide quantitative model based investing, for example,

and might be purely intuitive, or instead might be based off merging intuition with model based findings.

Needless to say, the same goes when forecasting volatility - judgment forecasts are often utilized by

practitioners. For example, judgment can help to: (i) define the space of candidate forecasting models

for consideration and aid in the eventual selection of a model, (ii) determine how a model can be used

to produce forecasts (e.g. should a rolling or expanding window be used when estimating a model using
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historical data?), and (iii) inform subjective adjustments of model-implied forecasts to cohere with one’s

prior experience and/or intuition (Petropoulos et al., 2018). In practice, reliance on judgment alongside

quantitative models is commonly observed, as evidenced by the approach used by many participants of the

Survey of Professional Forecasters, conducted separately in the US (Federal Reserve Bank of Philadelphia)

and in Europe (European Central Bank), who often report using judgment along with reduced-form and

structural models, to produce forecasts (Clements et al., 2023; de Vincent-Humphreys et al., 2019; Stark,

2013).

Many authors have found that judgmental forecasting can produce rather accurate predictions that

are on par with or outperform the best purely quantitative models, particularly if the forecaster has good

domain knowledge (Lawrence et al., 2006). However, this is not guaranteed. In the recent M6 forecasting

competition (see Makridakis et al. (2024)), participants were tasked with predicting the performance of

100 publicly traded assets over the course of an entire calendar year. Submitting teams could declare

whether they were using ‘pure judgment’, ‘judgment-informed’ or ‘data-driven’ approaches. Submissions

that relied heavily on judgment were generally inferior when compared to data-driven methods although a

minority of judgment-informed submissions did outperform (Makridakis et al., 2024). Furthermore, only a

small number of submissions (8.8%) self-identified as having used ‘pure judgment’ or ‘judgment-informed’

approaches while the majority (68.4%) relied on time series or machine learning models of the variety

surveyed in this paper. Nonetheless, it is conceivable that many ‘data-driven’ teams exercised judgment

in forming, selecting, and parameterizing their quantitative models, although the extent to which this

sort of judgment affected or contributed to forecasting performance was unobserved.

A specific application of subjective forecasting in returns prediction is technical analysis, also known

as the chartist approach. Typically, this involves identifying regularities in time series graphs of asset

price and volume data, with the expectation that these patterns can inform future movements. Lo et al.

(2000) argue that this is highly subjective or judgmental because the identification of geometric shapes

or patterns in a graph is often in the ‘eye of the beholder’, and further point out that technical analysis

has been compared to the unscientific disciplines of astrology and alchemy. These authors attempt to

suppress this subjectivity by introducing a systematic approach which attempts to: (i) define key patterns

in terms of geometric properties (e.g. using a sequence of local extrema), (ii) construct nonparametric

estimators for asset prices, and (iii) analyze these estimators for the occurrence of each geometric pattern.

Using this procedure, they find that several technical patterns can be predictive of future price movement,

particularly for NASDAQ stocks. Nonetheless, this approach still requires the development of a lexicon of
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pre-defined patterns that are believed to be predictive of future trends. A more recent approach by Jiang

et al. (2023) dispenses with this requirement by learning predictive patterns from the stock price images

via the use of convolutional neural networks, and subsequently producing out-of-sample predictions.

A related approach involves using sentiment analysis based on machine learning techniques to ex-

plicitly capture subjective opinions expressed in news articles, announcements, or social media for use in

financial forecasting. Sentiment is associated with the notion of emotional-based evaluation, which may

in turn influence judgment via several channels, as discussed in Kabiri et al. (2023). The idea is that an

agent’s sentiment towards financial markets may be useful for forecasting. Frydman et al. (2021) supports

this notion by providing evidence that when market sentiment is optimistic and good news on dividends

and interest rates arrive, this news has significant positive impact on survey participants’ forecasts of

future returns. Nonetheless, it has to be acknowledged that sentiment-driven stock price movements can

occur in the absence of changes to fundamentals such as news on dividends and interest rates. A case in

point is the ‘meme’ stocks that experienced surges in prices during the early 2020s (for example, at one

point there was a price increase of over 700% for GameStop ) because of the ‘to the moon’ movement

coordinated by the subreddit r/WallStreetBets on Reddit. This type of movement can be attributed to

herding behavior or noise traders (Long et al., 2023).

3.1.2. Random Walks and the Historical Averages

We begin with a parsimonious model-based approach for our forecasting process. Consider a simple linear

model for one-period ahead returns forecasting:

rt+1 = β0 + x′tβ + ut+1, (1)

where rt+1 is the change in the aggregate market price from period t to t+1 in excess of the risk-free rate1

(i.e. returns from a risky asset minus the risk-free rate), and ut+1 is some forecast error with zero-mean.

In the literature, common variables used for the aggregate market return are the log difference of the

S&P500 index, and the CRSP value-weighted equity returns. Here, xt is a vector of predictor variables2.

The simplest ’forecasting’ model to consider in the framework of (1) is the random walk model, which

1This is often referred to as excess returns or the equity premium in the case of stock returns. Note that the techniques that

we discuss here can also also be applied to the returns of individual assets or classes.

2Given that we are interested in forecasting, our analysis will focus on out-of-sample predictability of excess returns.
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can be obtained by setting β0 = 0 and β = 0. For simplicity, ignore the risk-free rate. This yields:

lnPt+1 − lnPt = rt+1 = ut+1,

where Pt is the price of an asset at time t. This model corresponds to the view that stock returns cannot

be predicted in a consistent fashion as the difference in (log) prices is essentially an unforecastable random

disturbance. The Efficient Market Hypothesis can be used to motivate such a specification. In an efficient

market, the price of an asset should reflect its intrinsic value. When market participants, who are assumed

to have a noisy estimate of its value, trade en masse, the market price of the asset will fluctuate randomly

around this instrinsic value (Fama, 1965, 1995). Under the random walk model, our best guess of next

period’s asset price is simply just the realized price that we observe today.

When β0 ̸= 0, we obtain a random walk with drift model. One way to motivate this model, given the

above explanation, is that the intrinsic value of assets might vary over time due to but not limited to news

of research and development or due to changes in management (Fama, 1965). Given this specification,

our forecast, r̂t+1 of stock returns at t+ 1 is the historical average at time t (the mean of all returns up

to time t), also known as the prevailing mean:

r̂t+1 =

t∑
i=1

ri.

To see why this works, observe that the model is:

rt+1 = β0 + ut+1.

Let Etrt+1 = E(rt+1|Ft), where Ft is the filtration of all information through time t (or the information

set available at time t). It follows that Etrt+1 = β0, whose consistent estimator would be the historical

average. This model also implies that a natural forecast of lnPt+1 is simply lnPt+1 + β0, so that prices

are assuming to ‘drift’ upwards over time, on average, with the average drift being equal to β0.

When forecasting excess returns out-of-sample, Goyal and Welch (2003, 2008) find that the prevailing

mean is an incredibly difficult benchmark to outperform, and many forecasts conditioned on additional

predictor variables fail to beat it in a statistically significant manner. This has led to the development of

many sophisticated models designed to deliver forecasts superior to those implied by the above modeling

approach, some of which are discussed in the remainder of this survey.

3.1.3. Predictive Regressions

The set-up in (1) allows us to include additional predictors in xt. Goyal and Welch (2008) provides a

comprehensive review of key predictors that have been argued to be useful in forecasting excess returns.
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These authors construct out-of-sample forecasts using predictors which include financial ratios (e.g. divi-

dend price ratios and book-to-market ratios), stock characteristics (e.g. stock variance and cross-sectional

premia), and macroeconomic variables (e.g. inflation and investment to capital ratios). Their approach

involves estimating univariate regressions of excess returns on each predictor (i.e. estimating (1), where

xt is univariate). The out-of-sample performance of each of the forecasts based on these models is then

compared with forecasts implied by the historical average.3 In their full sample analysis, only 2 out of the

17 predictors (equity issuing activity (Baker and Wurgler, 2000) and the consumption, wealth, and income

ratio (Lettau and Ludvigson, 2001)) performed consistently better than the historical average in out-of-

sample forecasting. In response to this result, Campbell and Thompson (2008) show that out-of-sample

predictability can be improved for many of the original predictors by imposing theoretically motivated

restrictions on the forecasting model in (1). They apply 2 restrictions either sequentially or jointly, the

first being that the regression coefficient, β, has to have the theoretically expected sign, and the second

being that the predicted value of the excess return is non-negative. Pettenuzzo et al. (2014) propose an

additional restriction on the conditional Sharpe ratio such that it is bounded by 0 and an upper bound,

so that the price of risk is not too high. Under these proposed restrictions, the above authors report

additional significant statistical and economic gains relative to both the unconstrained case and to the

restricted case suggested by Campbell and Thompson (2008).

In a recent update to their original paper, Goyal et al. (2023) repeat their analysis with updated data

(up to 2022) and 29 new predictors that have been recently introduced in the literature. These predictors

can be broadly related and grouped into 6 categories: macroeconomic, sentiment, stock variance, stock

cross-section, other stock market characteristic, and commodities. They also reconsidered the performance

of the original 17 predictors. The results indicate that the following predictors performed favorably out-

of-sample: (i) a principal component of 14 technical indicators (Neely et al., 2014), (ii) aggregate short

interest in the stock market (Rapach et al., 2016), (iii) aggregate accruals (Hirshleifer et al., 2009), (iv)

the fourth-quarter growth in personal consumption expenditures (Møller and Rangvid, 2015), (v) treasury

bill rate (Campbell, 1987), (vi) equity issuing activity (Baker and Wurgler, 2000), (vii) investment-capital

3For example, compare the ratios of mean squared errors (MSE): R̄ = 1−MSEP /MSEH , where MSEP is the MSE of the

forecast conditioned on a predictor and MSEH is the MSE of the historical average forecast. Here, a negative R̄ implies

that the historical average performed better, and vice-versa. Subsequently, the MSE-F test of McCracken (2007) can be

used to check the statistical significance of the ratio.
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ratio (Cochrane, 1991)4. The first 4 predictors were newly introduced while the latter 3 were present in

their original examination. One key finding is that the superior predictive performance of these predictors

frequently varies over time. Specifically, the authors point out that the aggregate accrual predictor derives

its good performance almost exclusively from the dot-com bubble episode and has relatively modest

performance elsewhere. We will return to this idea of time-varying predictability in a subsequent section

of this paper.

3.2. Advanced Methods and Models of Returns

3.2.1. Big Data and Predictor Selection - Machine Learning Part I

The set-up in (1) allows for multiple predictors in xt, however, we have only discussed univariate fore-

casting models thus far. Goyal and Welch (2008) specifies a ’kitchen sink’ regression which includes all

predictors in one regression but the out-of-sample forecasting performance of their model is particularly

poor. Reasons for this could be the increased estimation noise introduced when estimating so many

parameters or possibly an issue with in-sample overfitting. In this section, we discuss econometric and

machine learning methods that are used to counteract such issues and that enable us to effectively forecast

excess returns using a large number of predictors.

First, let the number of predictors in xt be P , and the sample size used to estimate (1) be T . We

consider two different cases: (i) P > T and (ii) T ≥ P . The first scenario often occurs when we use a large

number of predictors, and is an common situation given recent advances in data collection and reporting

technologies (e.g. think of high dimensional and high frequency financial datasets). For example, Dong

et al. (2022) use 100 long-short anomalies from the cross-sectional predictability literature to forecast

aggregate market return.

When we have a high-dimensional set of predictors, the predictive regression in (1) cannot be estimated

via ordinary least squares5 (OLS). A common solution is to assume a framework of sparsity.6 Here, we

4Here, the criteria for ’good’ performance is that the predictor-based forecasts have to have both statistically significant

in-sample predictability and statistically superior forecast performance, compared to the benchmark historical average.

Furthermore, they are subject to the restriction of not predicting a negative excess return (Campbell and Thompson, 2008).

Depending on the evaluation sample period used, the authors remark that 3 more predictors also displayed good forecasting

performance.

5More precisely, there is no unique solution to the least squares problem of P > T .

6Another approach assumes that all coefficients in a regression model are non-zero, but uses so-called ridge-regression to

estiamte the model.
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assume that a large number of regression coefficients are zero. This means that our high-dimensional

regression is actually a low-dimensional model because it effectively has only a few regressors. Intuitively,

this approach is consistent with the idea that not all predictors are relevant or useful in forecasting returns.

However, the key problem is that we do not know, a priori, which predictors are relevant.

This problem can be solved with regularization or penalized regression (e.g. ridge regression is a

form of penalized regression). The poster child of this approach is the least absolute shrinkage and

selection operator (LASSO). Implementing the LASSO involves solving the following penalized least

squares regression problem associated with equation (1):

min
θ=(β0,β′)′

T∑
t=1

(
rt+1 − β0 − x′tβ

)2
+ pλ(θ) (2)

where

pλ(θ) = λ

P∑
i=0

|βi|, (3)

and λ is called the regularization or tuning parameter. Depending on the value of λ, the LASSO estimator

can yield sparse estimates of the regression coefficient vector, θ. In general, when λ is large, the solution

vector tends to be more sparse because the large positive penalty associated with the ‘penalty term’

involving λ can be offset by setting some of the regression coefficients, |βi|, to 0 (see Hastie et al. (2015)).

Often, λ is chosen via a data-driven method such as cross-validation, so that the discovery of which

predictors are relevant is an automatic process.7

Even when T ≥ P , so that OLS is feasible, regularization can improve estimation accuracy of the

predictive regression (i.e. reduce the MSE).8 As demonstrated above, regularization can select a smaller

model and reduce model complexity, which translates into a lower estimator variance. Nonetheless, when

we introduce penalization, we deviate from the OLS estimator which is the best linear unbiased estimator

7There are crucial issues regarding the selection properties of the LASSO estimator. A sufficient condition for correct

(asymptotic) selection of the LASSO requires relevant predictors to be orthogonal to irrelevant predictors, which is highly

unlikely to hold when it comes to financial and macroeconomic data. Hence, in a finite sample, it is likely that it will not

correctly select predictors. Newer penalty terms that require weaker conditions have been suggested. Examples are the

adaptive LASSO (Zou, 2006) and the smoothly clipped absolute deviation penalty (Fan and Li, 2001). Both approaches

allow the penalty to differ across the variables, while in the original LASSO, the same penalty is applied to all the predictors.

Still, all versions of the LASSO are approximations, and it has been found that the LASSO still performs very well in many

empirical applications.

8The expected squared deviation of the estimator from its true value is E
[
(θ̂ − θ)2

]
. This can be shown to be equivalent to

the squared bias plus the estimator variance: [E(θ̂)− θ]2 + V ar(θ̂).

10



and thus introduce bias when using the LASSO or variants of it. However, if this additional bias is smaller

than the reduction in variance, the MSE of our estimation improves. Lee et al. (2022) revisit the ’kitchen

sink’ regression with 12 predictors as in Goyal and Welch (2008) and show that the (adaptive) LASSO can

improve forecasting performance of market returns when compared to using OLS or simply the historical

average of returns.

Advanced variants of the LASSO are often used in the literature due to limitations in the original

approach discussed above. Additionally, a key issue is that even if a group of predictors are relevant (i.e.

have non-zero coefficients), if they are highly correlated with one another, the LASSO tends to select only

one representative out of that group. The elastic net (Zou and Hastie, 2005), which uses a penalty that

is a convex combination of the LASSO (ℓ1) and the ridge penalties (ℓ2) was introduced to deal with this

issue. The penalty is:

pλ(θ) = λ

[
(1− α)

P∑
i=0

β2
i + α

P∑
i=0

|βi|

]
, (4)

and α ∈ [0, 1] determines how much weight is given to either the LASSO or ridge penalty terms (the

LASSO penalty term is the one involving absolute values and the ridge penalty involves summing squares

of coefficients). For example, when α = 1, the elastic net penalty reduces to the LASSO penalty. Rapach

et al. (2013) consider a predictive regression of US market returns on lagged market returns and the

returns of 10 other international markets, along with predictors such as the t-bill rate and the dividend

yield ratio, and estimate a regression using the (adaptive) elastic net. Similarly, Dong et al. (2022) use

the elastic net (among other approaches) to estimate a regression with 100 cross-sectional anomalies as

predictors and show that their regression model can generate both statistically and economically significant

improvements when forecasting out-of-sample.

3.2.2. Factor Models - Machine Learning Part II

Instead of selecting relevant predictors from a high-dimensional set of variables, the factor model frame-

work posits that the predictors can all be explained by a small number of latent common components or

factors. In this type of machine learning, estimates of the (unobserved) factors can be used in the predic-

tive regression in place of the original set of individual predictors. A standard model in this framework

is called the dynamic factor model and is specified as follows:

xit = λift + εit, (5)

ft = A(L)ft−1 + et, (6)

rt+1 = f ′
tβ + w′

tδ + ut+1. (7)
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Here, equation (5) posits that the i-th predictor in xt can be linearly explained by a k × 1 vector of

common factors, ft, that are unobserved. Additionally, εit, et, and ut are stochastic disturbance terms.

The dependence in this model on the factors is determined by the 1× k vector of factor loadings, λi. The

factors themselves can follow a VAR(p) process (see (6)) as characterized by the lag polynomial matrix

A(L). Assuming that we can identify and estimate the factors from the observed predictors, xit, we can

further use them in the predictive regression in (7), additionally accommodating other observed variables

in wt (such as lags of rt and lags of other key predictor variables).

As this model contains several unobserved objects, we first consider the issue of identification. We

stack λi over all predictors, for i = 1, ..., P , into the P × k matrix of factor loadings, Λ, and rewrite (5)

as:

xt = Λft + εt, (8)

where εt is the stacked vector of εit. Note that for an invertible matrix, A, of conformable dimension,

this model is observationally equivalent to: xt = (ΛA)(A−1ft) + εt ≡ Λ∗f∗
t + εt. This problem arises

because both Λ and ft are latent. To deal with this identification issue, several normalizations have been

introduced. We focus on the so-called principal components analysis (PCA) normalization. This involves

choosing one of the following 2 sets of normalizations: (i) F ′F/T = Ik and Λ′Λ is a diagonal matrix,

where F is the stacked T × k matrix of factors for the whole sample period; or (ii) Λ′Λ/P = Ik and F ′F

is diagonal.9 Given either of the restrictions, we can uniquely pin down an estimate of the latent factors

and loadings.

Given that we are interested in extracting factors for use in predictive regressions, we focus on the

nonparametric approach and do not specify the transition in (6).10 Stock and Watson (2002a) show

that we can estimate the factors and loadings in the above model by solving the following minimization

problem:

min
(F,Λ)

Tr
{
(X − FΛ′)(X − FΛ′)′

}
, (9)

subject to either normalization scheme described above, where Tr{·} refers to the trace operator, and X

is a T ×P matrix of xt stacked over time. They note that this optimization is equivalent to the principal

9There are several alternative ways to write these normalization restrictions. For example, they may only hold asymptotically

if one views the factors and loadings as random variables. For a summary of more identifying restrictions, see table 1 of Bai

and Li (2012).

10In other words, we allow the dynamics of the factors to be arbitrary (to an extent). If one is interested in recovering the

parameters in (6), a state space approach can be considered (see Stock and Watson, 2016).
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components analysis problem. For exposition, assume that we have used normalization (ii), and the PCA

solution is obtained by setting Λ̂ to be the first k eigenvectors of X ′X that correspond to the k largest

eigenvalues of this matrix, and F̂ = XΛ̂/P is just the resulting least squares estimate. The situation

can be symmetrically derived if we have used normalization (i) instead. In this approach, PCA estimates

of the factors are consistent for the space spanned by the factors and can subsequently be used in the

predictive regression in (7) without having to address the generated regressor problem associated with the

fact that the explanatory variables in the predictive regression (i.e. the factors) are themselves estimated

and not directly observed. Ludvigson and Ng (2007) estimate factors from 209 macroeconomic indicators

and 172 financial variables using principal components analysis, and use them in predictive regressions.

These factors exhibit superior performance when forecasting one-quarter ahead excess returns. Çakmaklı

and van Dijk (2016) perform a similar analysis with macroeconomic data at the monthly frequency and

observe similar results. Dong et al. (2022) extracts the first principal component from their dataset of

100 anomaly predictors and show that it performs comparably well with their elastic net forecast.

The PCA approach can be used even when the number of predictors is small. For example, Neely et al.

(2014) extract principal components from 14 macroeconomic variables and 14 technical indicators and

show that forecasts of excess return based on these factors perform the best out of all competing models

and even outperform the historical average. The market-wide sentiment index of Baker and Wurgler

(2006, 2007) is the first principal component of 6 variables that they argue proxies for investor sentiment

(for e.g. NYSE share turnover and the dividend premium). However, several studies including Arif and

Lee (2014) and Huang et al. (2015) show that this index has little to no predictive power for future

aggregate stock returns.11

One potential shortcoming in using PCA for forecasting is that the resulting common components are

constructed to capture the maximum variation common to all of the predictors. The estimation procedure

does not take into account the forecast target when forming the common factors. In other words, it may

be the case that some of the factors that capture the maximum variation among all predictors are not

best suited for forecasting a particular variable. To see this, we can split the factors in (5) into two parts:

xit = λR
i f

R
t + λE

i Et + εit, (10)

where fR
t is the part of the common component that is most relevant to forecasting returns while Et

11It should be noted that the authors of the original index did not propose using it for forecasting aggregate returns, but

instead proposed using it for cross-sectional asset pricing.
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describes the common variation in the predictors irrelevant to returns forecasting. The relevant factors

will now be used in the forecasting step:

rt+1 = fR′
t βR + w′

tδ + ut+1. (11)

Kelly and Pruitt (2013, 2015) show that improvements to stock return forecasting can be obtained by

focusing on the common components of the predictors that are most relevant to the forecast target. This

begs the question of how we can obtain fR
t in the first place given that PCA is unable to differentiate

between fR
t and Et. Here, we use the method of Partial Least Squares (PLS) first introduced by Wold

(1966) and applied to stock return forecasting by Kelly and Pruitt (2013). This estimation procedure

is executed in two steps. We begin with a time-series regression of the individual predictors on the

one-period ahead excess returns:

xit = θ0i + θ1irt+1 + ξit,

for each given i. From (11), we have that rt+1 is driven by fR
t , which is one component of xit, hence θ1i

approximately captures how the individual predictors depend on the common factors that are relevant

to returns forecasting. In other words, θ1i approximates λR
i . Recall that we are interested in estimating

fR
t , which is easily obtained via a cross-sectional least squares regression of (10) if we knew what λR

i is.

Although we do not observe λR
i , we have, from the first step, a rough estimate of it in the form of θ̂1i for

all i and thus we employ it in the following cross-sectional regression:

xit = at + fR,PLS
t θ̂1i + ξ̃it.

Repeating this regression for all t results in a time-series of {fR,PLS
t } which we regard as estimates of

{fR
t }. Groen and Kapetanios (2016) prove the consistency of the PLS estimator in this context while

Kelly and Pruitt (2015) provided asymptotic inference results.

Another approach to the above problem is to consistently select the variables that are relevant for

forecasting the target, prior to the construction of consistent factor estimates. Factors estimated in this

way are efficient, in the sense that irrelevant variables are excluded when the factors are estimated. One

can then proceed to specify a predictive regression by selecting those factors that are relevant for predicting

returns via use of a variable selection procedure based on predictive experiments using a training dataset,

for example. This method is discussed in Chao et al. (2024).
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3.2.3. Time-varying Predictive Regressions

Aggregate stock returns depend on the state variables of the economy, which in turn can vary over the

business cycle.12 Pesaran and Timmermann (1995) and Timmermann (2008) provide early evidence

that the out-of-sample predictive power of market return predictors tends to change over time and that

predictability is particularly low when the markets are calm but is greatly elevated during volatile periods.

In other words, predictability is local to short periods or intervals (later termed ’pockets’) of time. It

is difficult to see how a static predictive regression as in (1) would be able to match such changes in

predictability over time. Hence, we shall discuss the following time-varying predictive regression:

rt+1 = β0t + x′tβt + ut+1, V ar(ut+1) ≡ σ2
t+1. (12)

A simple parametric model to capture the time variation of β in this model is the following specification:

β0t = β0(st), βt = β(st), σ2
t = σ2(st) (13)

where st ∈ {1, ...,M} represents a latent state of the economy at time t and M is the maximum number of

states. The simplest (and probably most intuitive) example is when M = 2, and we interpret the states as

being representative of either economic recession and expansion. Another possible interpretation is that

of a bull or bear market. The latent states are often assumed to follow a Markov-chain, which implies

that (12)-(13) is a Markov-switching model. This model can be estimated by maximum likelihood, often

with the EM algorithm, and the latent states can be obtained by filtering and smoothing (see Hamilton,

2016, for modeling and estimation details). Henkel et al. (2011) estimate a Markov-switching vector

autoregression (VAR) with two states using the endogenous variables: (i) short-horizon aggregate excess

returns, (ii) dividend yield, (iii) short-term interest rate, (iv) term spread, and (v) the default rate. The

equation of interest in this VAR is the first equation as it relates excess returns to lagged returns and

the other predictors (this is similar to the specification in (12)). They interpret the two estimated latent

states as corresponding to recessions and expansions. They find that the R2 for the first equation (the

equation that corresponds to the excess return) is much higher during recessions, which they argue implies

greater return predictability (i.e. better model fit) during economic downturns. It is important to remark

that their work was done by estimating their model in-sample (i.e. results were obtained using the full

sample data that they had available), although the authors do provide some out-of-sample evidence that

12See Rapach and Zhou (2013) for a detailed explanation on how return predictability depends on time-varying aggregate

risk.
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the Markov-switching VAR can outperform the historical average but only during recessions, which is

consistent with the paper’s message.

The parametric assumption on the evolution of the model parameters in (13) might be too restrictive.

One could instead allow β0t, βt, σ
2
t to be continuous functions of time. Dangl and Halling (2012) consider

the following state space model for their predictive regressions:

rt+1 = z′tθt + ut+1, ut+1 ∼ N(0, V )

θt = θt+1 + et, et ∼ N(0,Wt),

where zt = (1, gt)
′, and gt here is a univariate predictor. The authors use 13 predictors that were studied

by Goyal and Welch (2008) in their univariate time-varying predictive regressions. The model is estimated

via Bayesian methods and the analysis is entirely out-of-sample. The key findings are that excess return

forecasts from this time-varying model can statistically outperform the historical average and that return

predictability is similarly countercyclical. Although they do remark that predictability during expansions

is not as low as was previously suggested by Henkel et al. (2011).

Nonetheless, the random walk restriction in the coefficient transition could be problematic as that

might lead to non-stationarity in the returns.13 To ensure a more robust analysis, one could specify that

θt is an unknown but smooth function of time: θt = θ(t), and estimate the model with nonparametric

techniques.14 This is the approach taken by Farmer et al. (2023), where the estimator of θt is the

Nadaraya-Watson local constant estimator:15

θ̂t = argminθ0
1

T

t−1∑
s=1

(rs+1 − z′sθ0)kst, (14)

where

kst =
1

h
K

(
s− t

Th

)
,

K(·) is a kernel function, and h is a positive bandwidth. The authors use the (one-sided) Epanechnikov

kernel: K(u) = 3/2(1−u2) for −1 < u < 0, and 0 otherwise. Note that the estimation of the time-varying

13The authors do consider an autoregressive model in their appendix, but show that the random walk model outperforms in

terms of forecasting.

14To be precise, for the consistency of nonparametric estimators, particularly a kernel estimator of θt, we have to assume

that θt = θ(t/T ), so that it is a function of standardized time. Then, the estimator can be shown to be consistent under

an infill asymptotic scheme, as T → ∞ (Robinson, 1989; Cai, 2007).

15Nonparametric kernel estimators are not commonly used for financial forecasting, but are more commonly used in the

macroeconomic forecasting literature (Su and Wang, 2017; Chen and Maung, 2023).
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coefficient is entirely out-of-sample because only information available up to time t is used when estimating

θt. Let the one-period ahead forecast implied by the time-varying regression be r̂t+1|t. The authors define

the squared error difference (SED) between some benchmark forecast (the historical average) r̄t+1|t and

r̂t+1|t as:

SEDt = (rt − r̄t|t−1)
2 − (rt − r̂t|t−1)

2. (15)

When SEDt > 0, the time-varying regression forecast performs better than the benchmark. To system-

atically identify these periods, they further project the measure on a constant and a time trend:

SEDt = γ0t + γ1tt+ vt, (16)

where the coefficients of the projection are again estimated with the one-sided kernel estimator. The

periods where the time-varying forecast outperforms the benchmark are termed ’pockets of predictability’,

and can be discovered as ŜEDt = γ̂0t+ γ̂1tt > 0. The authors use 4 familiar predictors in zt in a univariate

fashion: (i) dividend price ratio, (ii) t-bill rate, (iii) term spread, and (iv) realized variance of returns. A

key finding is that the superior predictability of the time-varying predictive regressions, using the stated

predictors, are local to short time intervals (pockets), and these are interspersed with longer periods of

little to no predictability. The result is robust to whether we use daily or monthly daily. In other words,

for most of the time, the historical average benchmark performs better than univariate time-varying

predictive regressions. This is not necessarily a negative result as the authors also propose a forecast

combination method that capitalizes on this fact by combining the historical average with forecasts from

the time-varying regression. We return to the idea of forecast combinations later.

3.2.4. Tree Based Methods and Neural Networks - Machine Learning III

In machine learning contexts, the use of nonparametric estimation for more flexible specifications of

predictive regressions raises the question on whether the linear restriction in (1) is justified in the first

place. Here, we shall consider a non-linear generalization:

rt+1 = f(xt) + ut+1 (17)

where f(·) is an unknown and possibly non-linear function. The classical way to estimate f is by nonpara-

metric estimation either by way of kernel or sieve regressions. There are at least two major drawbacks

to these approaches: (i) if the number of predictors in xt is large, classical nonparametric estimators will

suffer from the so-called ‘curse of dimensionality’ and might fail to provide an estimate, and (ii) many of
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these methods require the f function to be sufficiently smooth (i.e. such that their first, second or larger-

order derivatives exist). Some machine learning methods require weaker conditions and may thus perform

well when traditional methods fail. We consider two here: tree-based methods and neural networks.

We first discuss the basic regression tree. To simplify exposition, assume that we only have two

predictors x1t and x2t. Next, imagine a 3-dimensional coordinate plane with (x1t, x2t) occupying the x and

y-axes, and with rt+1 on the z-axis. The main idea of the regression tree is to partition the joint support of

the 2-dimensional plane of (x1t, x2t) into regions such that the dependent variable, rt+1, is constant within

each region (Rossi, 2018). These regions can be obtained via a recursive binary partitioning procedure.

One can then choose either x1t or x2t and a hypothetical splitting point. The (in-sample) predicted value

of rt+1 on each of the two regions is called its region-mean, and the residuals from the discrepancy between

the actual observation of rt+1 and this region-mean can be computed. Some measure of best fit can then

be constructed in a very similar fashion to a least squares regression and the chosen splitting point is the

one that yields the best fit. Subsequently, one or both of the regions undergo another split, yielding two

more partitions per split. The process continues until some criterion is satisfied. Following the notation

in Medeiros et al. (2021), we let ĉk denote the sample average of rt+1, within region k (i.e. region Rk).

The regression tree estimator of f(xt) is given as:

f̂(xt) =

K∑
k=1

ĉkÎk{xt} (18)

where Îk{xt} = 1, if xt ∈ Rk, and 0 otherwise.

Boosted regression trees add on more regression trees to the original estimator (18). The first addition

is trained on the in-sample residuals (rt+1 − f̂(xt)) that result from using (18), while the second addition

is trained on the residuals from using the estimator with the first added tree. These additions are

called boosting iterations. Rossi (2018) use a boosted regression tree with all the major predictors from

Goyal and Welch (2008) in an out-of-sample forecasting and show that it outperforms many established

benchmarks for forecasting stock returns (and volatility).16

Another variant of the regression tree is the random forest. The random forest is effectively an average

of regression trees trained on bootstrap samples. Let B be the total number of bootstrap iterations. The

16A classical nonparametric estimator such as the kernel regression estimator in the context of (17) may not be feasible for

this problem due to the relatively large number of predictors.
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random forest estimator is given as:

f̂(xt) =
1

B

B∑
b=1

(
Kb∑
k=1

ĉk,bÎk,b{xt}

)
, (19)

where objects that have the subscript b indicate estimates for a particular bootstrap iteration. In practice,

since we are working with time-series data, the stationary bootstrap or block bootstrap is employed (Politis

and Romano, 1994). Basak et al. (2019) use a random forest classifier to predict the direction of stock

market prices.17

Let us now discuss neural networks. A feed-forward neural network is best described in terms of three

types of layers. The input layer consists of input data or ‘regressors’ which correspond to our predictors.

The output layer is the (in-sample) predicted value of the dependent variable. Between the input and

output layer, there are hidden layers that are composed of activation units or functions that transform

the input data. The layers are connected by edges (or ‘arrows’) that move in one direction from the input

to hidden to output layers. These edges correspond to weighted aggregations. A shallow neural network

is a network with only 1 hidden layer with R activation units, and can be represented as a nonparametric

regression:

rt+1 = α0 +

R∑
i=1

αig(β0,i + x′tβi) + ut+1, (20)

where g(·) is an activation function (examples include the sigmoid function, the rectified linear function,

and the logistic distribution function), β0,i and βi represent the weights on the edges from the input

layer (the weighted combination of predictors) that feed into the i-th activation unit, and αi is the

contribution of the i-th activation unit to the (in-sample) predicted value of r̂t+1 in the output layer. A

deep neural network has Q > 1 hidden layers (also called hidden units). Gu et al. (2020) forecast stock-

level returns using a predictor set of 94 stock-level characteristics (and interactions with 8 aggregate

time-series variables) and 74 industry sector dummy variables, with regression trees and neural networks

(both shallow and deep). They show that the out-of-sample performance of these methods could be double

that of leading regression-based approaches. Interestingly, the authors find that shallow networks tend

to deliver better performance than deep networks in their sample. Chen et al. (2024) consider a similar

stock-level investigation using 178 macroeconomic time series predictors together with 46 stock-specific

17Tree-based classifiers are different from tree-based regressions. The main difference is that the dependent variable for a

classifier is a discrete (often binary) variable. In the context of the above paper, the support of the dependent variable is

{−1,+1}.
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characteristics. Their approach uses a multi-step neural network (again both shallow and deep) forecasting

approach, with similarly promising findings regarding the usefulness of machine learning methods.

3.2.5. Forecast Combination

We have introduced many potential models for predicting returns ranging from the simple random walk

to deep neural networks. A timely question to ask at this point is which model is the ‘best’ model for

out-of-sample forecasting? Furthermore, given our discussion on time-varying predictability, it is also

pertinent to ask when they will perform well.

These questions are challenging to answer because the true underlying data generating process (DGP)

of excess returns is complex and ever-changing due to factors such as institutional and policy changes,

business cycle shocks, investor learning, and other structural changes (Rapach et al., 2010). It is thus

highly unlikely that any single predictive model will always ‘best’ approximate the true DGP. This is

consistent with the numerous observations above that for a given forecasting model, its predictive power

is often time-varying. Hence, instead of picking just one forecast model, one could consider a combination

of a suite of forecasts, ideally generated with different conditioning predictor information or from different

model specifications. Such forecast combination can be viewed as a hedge against changes in the DGP

that are not captured by a particular model. For a comprehensive review of forecast combination see

Timmermann (2006).

If we let the one-period ahead forecast of excess returns from model i be r̂i,t+1|t, one way to combine

forecasts would be the following linear weighted aggregation:

r̂c,t+1|t =

K∑
i=1

wir̂i,t+1|t (21)

where r̂c,t+1|t is the combined forecast of K forecasts from K different models, and where wi is the weight

attached to forecast i. The key question here is: How should we allocate the weights? The simplest way

to do this is via equal weights: wi = 1/K, for i = 1, ...,K, which corresponds to taking the average of

all of the forecasts. This approach disregards the relative performance of the forecasts and runs counter

to the idea that we should attach higher weights to better performing forecasts and little or no weight

to inaccurate ones. Nonetheless, it is a common empirical finding that the equal weighted combination

tends to dominate other more sophisticated ways of combining forecasts. This conundrum is termed the

‘forecast combination puzzle’, as discussed in Stock and Watson (2004). One potential reason for this

is that many sophisticated combination methods require estimating a multitude of parameters, which

introduces estimation noise. Another is that no one model is sophisticated enough to capture all of the
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latent features of the true DGP, but by forming an average on all (or many) models, we optimally diversify

away the effects of misspecification of every model. This argument is related to the idea of time varying

parameters.

Given the observed superiority of the historical average forecast, many combination strategies involve

combining the historical average together with other model-implied forecasts. Lin et al. (2018) run

predictive regressions of corporate bond returns with 27 univariate predictors and use equal weights to

combine all of their forecasts. Using their notation, we label this combined forecast r̂MC
t+1|t. They suggest

using an additional iteration of combination with the historical average forecast, r̄t+1|t, in a regression-

based combination:

rt+1 = (1− δ)r̄t+1|t + δr̂MC
t+1|t, (22)

where the weights of each forecast are restricted to sum to 1 and δ is estimated via OLS regression. The

authors show that iterated combination with the historical average generates out-of-sample predictability

that is of statistical and economic significance. The idea of using OLS regression to obtain forecast weights

instead of specifying equal weights is due to Granger and Ramanathan (1984). They suggest the following

specification to estimate the weights:

rt+1 = w0 +
K∑
i=1

wir̂t+1|t + vt+1, (23)

under three different restriction schemes. The first set of restrictions is given by w0 = 0 and
∑K

i=1wi = 1,

the second scheme only requires w0 = 0, and the final scheme has no restrictions. The last scenario is

clearly the most general. Excluding an intercept term as in the first and second case can induce a biased

combined forecast if the individual forecasts are biased, while this bias can be absorbed by the intercept

term in the fully unrestricted case.

Farmer et al. (2023) also consider using equal weighted combinations. Recall that they estimate 4

univariate predictive regressions and check whether the forecast for each regression can beat the historical

average. At time points where the model-implied forecasts outperform the historical average, they label

those local periods of time as ‘pockets of predictability’.18 The authors propose the following approach

to combine the forecasts from the 4 univariate regressions:

1. When the predictor is identified to be in a pocket of predictability, use the model-implied forecast,

otherwise use the historical average.

18For each predictor, there are different sets of pockets.
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2. Combine the forecasts from the 4 models using equal weights.

Hence, if none of the predictors are in any pocket, then the combined forecast is just the historical average.

If one of the predictors is in a pocket, then 25% of the combined forecast is associated with the forecast

implied by the corresponding predictive regression, and 75% comes from the historical average.

An intuitive way to construct combination weights would be to relate it directly to the accuracy of

the forecasts. Rapach et al. (2010) consider the following construction of the weights:

wit =
ε̄−1
it∑K

j=1 ε̄
−1
jt

, (24)

where the forecast error is given by:

ε̄it =

t−1∑
s=1

θt−1−s(rs+1 − r̂i,s+1|s),

and θ < 1 is a discount factor that places higher weight on more recent forecast errors, and lower weight

on forecast errors in the distant past. The idea here is that is when forecast i exhibits good forecasting

accuracy in the past, ε̄−1
it is large, so a larger weight will be assigned to it. Note that the weights are

continuously updated as we move forward in time (i.e. it is time-varying)19. When θ = 1, we recover the

original weights suggested by Bates and Granger (1969). They show that for θ = 1, (24) is the solution to

the optimization problem from minimizing V ar(r̂c,t+1|t) with respect to {wi}Ki=1 from (21). Rapach et al.

(2010) show that this combination scheme yields superior out-of-sample forecast performance relative to

the historical average.

4. Methods and Models for Forecasting Volatility

The importance of volatility forecasting for investing using financial methods, and more generally in

econometric modelling is obvious, as discussed above. For example, when constructing Sharpe ratios

for evaluating portfolio performance, volatility forecasts are needed. Volatility is often estimated using

so-called realized volatility, which is discussed in detail in the sequel. Future realized volatilities are often

used in variance swaps, an important product in the volatility derivatives market. Other products that

use realized volatility such as caps on variance swaps, corridor variance swaps, and options on realized

volatility are also important financial instruments that are traded in financial markets. Why? Investors

19Regression-based forecast combinations as in (23) can also be estimated in a time-varying fashion such as with a rolling-

window, or nonparametrically as in Chen and Maung (2023).
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worry about future volatility risk, and hence often choose to opt for this type of contract in order to

hedge against it. Realized volatility is also needed for calculation of the variance risk premium, a financial

variable that has interesting implications in asset pricing. Bollerslev et al. (2009) find that the variance

risk premium is able to explain time-series variation in post-1990 aggregate stock market returns with

high (low) premia predicting high (low) future returns.

Jumps have a significant impact on modeling and forecasting volatility and it’s realized measures. For

example, when jumps are present, realized volatility is a biased estimator of integrated volatility that is

defined in continuous time financial models (see below for further discussion). Thus, practitioners who

are interested in modeling risks associated with continuous components of return processes, or integrated

volatility, should use carefully designed realized measures of volatility that take jump effects into account.20

Careful analyses of jumps and realized measures in the presence of jumps are crucial elements to any

reasonable quantification of risk. Moreover, several authors (e.g. see Andersen et al. (2007)) have found

that separation of continuous components from jump components can improve forecasts of future realized

volatility. This finding should be of great interest to practitioners, especially when their objective is

hedging.

Summarizing, the importance of integrated volatility (and its estimator - realized volatility), jumps and

co-jumps in financial econometrics, risk management, and investing cannot be understated. However, in-

tegrated volatility is unobservable. For this reason, theorists have developed numerous relevant measures.

One of the earliest is called Realized Volatility, as discussed in Andersen et al. (2001). However this mea-

sure does not separate jump variation from variation due to continuous components. Barndorff-Nielsen

and Shephard (2004) use the product of adjacent intra-day returns to develop jump robust measures called

Bipower and Tripower Variations. One of the more recent techniques for separating out the jump compo-

nent is a truncation methodology which essentially eliminates returns which are above a given threshold

(see Corsi et al. (2010) and Aı̈t-Sahalia et al. (2009)). One important caveat when using high-frequency

financial data in these contexts is the existence of market microstructure noise which creates a bias in the

estimation procedure. Zhang et al. (2005), Zhang et al. (2006) and Kalnina and Linton (2008) solve this

problem by proposing noise robust volatility estimators.

There are many methods and models used to estimate volatility by practitioners, and in the remain-

der of this section we discuss some of these, including simple methods like RiskMetrics, more compli-

20See Corradi et al. (2009) and Corradi et al. (2011) for a discussion of how to construct predictive densities for integrated

volatility.
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cated discrete methods including the ever popular generalized autoregressive conditional heteroskedas-

ticity (GARCH) model, and modern methods based on parametric and nonparametric analysis of high

frequency and high dimensional financial datasets.

4.1. Simple Methods and Models of Volatility

4.1.1. RiskMetrics

The RiskMetrics approach to volatility forecasting, also known as the JP Morgan method, relies on an ex-

ponentially weighted moving average model. This model implies that the forecast of today’s (conditional)

volatility is a weighted average of past squared returns (proxies for the unobserved true volatility)21:

σ2
t|t−1 = (1− λ)

∞∑
i=0

λiz2t−i−1, (25)

where zt = rt − r̄, rt is the return, r̄ is the historical average of returns, and 0 < λ < 1 is known as the

decay or smoothing factor. We can interpret the RiskMetrics forecast as a weighted average of yesterday’s

actual volatility and a volatility forecast:

σ2
t|t−1 = (1− λ)

[
z2t−1 + λz2t−2 + λ2z2t−3 + · · ·

]
= (1− λ)z2t−1 + λ(1− λ)

[
z2t−2 + λz2t−3 + λ2z2t−4 + · · ·

]
= (1− λ)z2t−1 + λσ2

t−1|t−2.

(26)

Written in this way, it is easy to see that the exponentially weighted moving average is a restricted version

of the GARCH(1,1) model to be discussed later. Specifically, (26) is equivalent to a GARCH(1,1) process

with a zero intercept and coefficients that sum to 1 in the conditional volatility equation.

The decay factor λ has to be pre-specified prior to forming the forecast and the RiskMetrics approach

recommends using a value of 0.94 for daily forecasts and 0.97 for monthly forecasts (see Mina et al.

(2001)). An alternative approach calibrates λ by minimizing the root mean squared forecast error on a

training dataset:

λ̂ = argminλ

√√√√ 1

T

T∑
t=1

(
z2t − σ̂2

t|t−1(λ)
)2

,

where σ̂2
t|t−1(λ) are different forecasts of volatility resulting from varying values of λ in (25). This opti-

mization is easily conducted via a grid search over a predefined set of values for λ.

21In practice, the computation of the infinite sum in (25) is replaced by a finite summation of a specified truncation length.
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Given the parsimonious forecast construction under the RiskMetrics approach, an essential question

to ask is whether it can outperform more sophisticated approaches. McMillan and Kambouroudis (2009)

perform a horse race to compare forecasts from GARCH-type models and the simpler RiskMetrics forecast

and they report that the RiskMetrics forecasts performed well for several Asian markets while the GARCH

models performed better for the G7 nations and larger Asian countries. Alexander and Leigh (1997) find a

similar result. Namely, GARCH models perform more favorably compared to the exponentially weighted

moving average in most of their forecasting exercises. Thus, the performance of the RiskMetrics forecast

appears to be mixed when compared with more general GARCH models, but it does have the advantage

of computational simplicity.

4.1.2. Autoregressive Moving Average (ARMA) Models

Suppose that we have a proxy for the unobservable return volatility such as the intraday high-low range

or realized volatility (which will be discussed below) and label this proxy yt. Our forecast of volatility

can be constructed with typical time series approaches applied to this proxy. A key model here would be

the following ARMA(p,q) model:

yt = β0 +

p∑
i=1

βiyt−i + εt +

q∑
j=1

αjεt−j , (27)

where ϵt is a stochastic disturbance term. This model can be estimated with either an expanding or

rolling window of historical data to generate forecasts of yt+k.

An early application of such models in volatility forecasting is Taylor (1986), where ARMA-type

models are used to forecast future standard deviations of returns. Subsequent work applied similar

models to improved measures of the volatility proxy. Hsieh (1991) forecasts daily log realized volatilities

constructed from S&P500 returns in 15-minute intervals using an AR(5) model. Subsequently, Li and

Hong (2011) propose a similar AR model to forecast volatility proxied by the intraday high-low range.

In their forecasts of U.S. monthly realized volatility constructed from daily equity returns, French et al.

(1987) use an autoregressive integrated-moving average model (ARIMA) while Schwert (1989) uses an

AR(12) model, with monthly dummies.

Under the ARMA framework, it is straightforward to extend univariate volatility forecasting to the

multivariate setting. The use of such multivariate systems is particularly important when the volatilities

of many stocks, asset classes or markets are jointly modelled, as such systems explicitly allow for different

volatilities to interact with each. Volatility spillovers between markets or stocks is one key example of

such interactions. If these interactions are present in the data, univariate modeling of the volatilities will
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induce an omitted variable bias which may influence forecast accuracy.

A simple model that aims to capture these effects is the vector autoregression (VAR):

Yt = A0 +

p∑
i=1

AiYt−i + εt, (28)

where Yt is a vector of volatility proxies from different assets or markets, A0, ..., Ap are coefficient matrices,

and εt is a stochastic disturbance term. Andersen et al. (2003) apply a VAR(5) to forecast the realized

volatilities of 3 exchange rates22, while Wang and Wan (2020) use a VAR model with structural breaks

to forecast the volatilities of six highly liquid stocks.

An obstacle to the direct application of AR or VAR methods to realized volatility modeling is the issue

of long memory (i.e. persistent and highly autocorrelated behavior across different time series). See Baillie

(1996) and Andersen et al. (2003) for a discussion of fractionally integrated time series models that are

relevant in this context. Interestingly, it is possible to approximate a stationary fractionally integrated

time series with an AR model with increasing lag order. Poskitt (2007) provides several theoretical

conditions to guarantee the validity of such an approximation while Wang et al. (2013) extend the results

to fractionally integrated processes with structural breaks. For an alternative approach, Bauwens et al.

(2023) study the conditions under which a VAR(1) can sufficiently account for long memory in the

individual variables and propose a restricted estimation approach (via penalization) of the VAR(1) such

that the conditions are satisfied. Another model that is relevant in this context is the heterogeneous

autoregressive model of Corsi (2009).

4.2. Advanced Methods and Models of Volatility

4.2.1. Discrete Time ARCH and GARCH Models

At the time of the development of GARCH models to forecast volatility in the 1980s and 1990s there were

a number of stylized facts that were front and center in the minds of practitioners and researchers. Some

of these included the following:

Leptorkurtosis: Asset returns were noted by Mandelbrot (1963) and Fama (1965) to have fat tails,

indicating the importance of using non-normal distributions to model their dynamics. Fama (1965)

shows evidence of excess kurtosis in the distribution of stock returns. Engle and Gonzalez-Rivera (1991)

introduce a semi-parametric volatility model, which allows for generic return distributions.

22The time series used have been fractionally differenced to deal with the problem of long memory.
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Volatility Clustering and Persistence: By observing cotton prices, Mandelbrot (1963) stressed that

“.... large changes tend to be followed by large changes, of either sign, and small changes tend to be

followed by small changes...”. The persistence of shocks to the conditional variance of stock returns seems

to be clear. The interpretation of this persistence as well as how long the shocks persist is crucial in

specifying the “correct” dynamics. Poterba and Summers (1986) note that volatility shocks may affect

the entire term structure, associated risk premia, and investment in long-lived capital goods.

Broadly speaking, volatility persistence is an important feature that pertains to models with time

varying and codependent variance structures. Black and Scholes (1973) write that “...there is evidence of

non-stationary in the variance. More work must be done to predict variances using the information avail-

able.”. Since their paper, numerous autoregressive conditional heteroskedasticity, volatility and stochastic

volatility models have been developed.

Leverage Effects: Black (1976) observed that changes in stock prices seem to be negatively correlated

with changes in stock volatility. Volatility seems to increase after bad news and decrease after good news.

Schwert (1989) and Schwert (1990) presents empirical evidence that stock volatility is higher during

recessions and financial crises. Christie (1982) discusses economic mechanisms that explain this effect.

Specifically, reductions in equity value raise the riskiness of firms, as implied by debt to equity ratios, and

therefore lead to increases in future volatility. For modeling, Nelson (1991) suggests a new model that

captures the asymmetric relation between returns and changes in volatility.

Co-movement in Volatilities: This feature was also first commented on by Black (1976). He points

out the commonality in volatility changes across stocks. When stock volatilities change, they all tend to

change in the same direction. This suggests that (few) common (unobserved or missing) factors might be

specified when modelling individual asset return volatility.

ARCH and later GARCH models were specified to adhere as closely as possibly to the above stylized

facts. Consider the autoregressive conditional heteroskedasticity (ARCH) model of Engle (1982) and the

Generalized ARCH (GARCH) model of Bollerslev (1986), as well as related models. These models are

very well known, but we briefly discuss them in order to trace the evolution to modern continuous-time

stochastic volatility models.

Let Xt be a financial asset return, say, and Ft−1 denotes a filtration of all information through time

t− 1. The prototypical autoregressive conditional heteroskedasticity (ARCH) model has:

Xt = εtσt
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where εt is a stochastic disturbance term. Here,

εt ∼ i.i.d with

E(εt) = 0 and V ar(εt) = 1 and

σ2
t = α0 + α1X

2
t−1.

where the α’s are constants to be estimated. In the more general case:

Xt|Ft−1 ∼ N(Ztβ, σ
2
t ),

σ2
t = h(εt−1, εt−2,...,εt−p, α), and

εt = Xt − Ztβ,

where Zt may contain lags of Xt. and Ft−1 is a data filtration, as discussed above. If the function h

contains current and lagged X ′s, then

σ2
t = h(εt−1, εt−2,...,εt−p, xt, xt−1,...,xt−p, α).

In this class of models, ARCH(p) is the most popular one, and has the following specification:

Xt|Ft−1 ∼ N(Ztβ, σ
2
t ),

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + . . . αpε

2
t−p.

Engle (1982) proposes a convenient estimation and testing methodology for this model using maximum

likelihood. He shows that α and β can be estimated separately under some regularity conditions.23 To

capture the trade-off between risk and expected return, Engle et al. (1987) introduce ARCH in mean, or

ARCH-M models, where: Let

Xt = g(Zt−1, σ
2
t ; b) + εt,

with g(·) being some appropriately defined function. The appealing feature of this model is that the

conditional mean, µt, is a function of the variance, i.e. µt = g(Zt−1, σ
2
t ; b). This helps us to directly

model the risk-return relationship, and has important implications for predicting the conditional mean

function, since the conditional volatility enters therein. In practice, many papers set g(·) to be a linear

or logarithmic function.

23For details, see Sections 4 and 5 in Engle (1982).

28



An important improvement to these models is made by Bollerslev (1986), where the ARCH model

is generalized to the Generalized ARCH (GARCH) model. As noted in Bollerslev (1986), the extension

from ARCH to GARCH is similar to the extension in time series modelling of an AR to an ARMA model.

Specifically, as in the case of the ARCH model, let εt be the innovation in a linear regression

εt = Xt − Z ′
tβ,

where β is a vector of parameters. Then the GARCH (p,q) specification is given by

εt|Ft−1 ∼ N(0, σ2
t ),

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i,

εt = Xt − Ztβ,

where p and q denote lag orders, and

p ≥ 0, q > 0,

α0 > 0, αi ≥ 0, i = 1, ..., q, and

βi ≥ 0, i = 1, ..., p.

The difference between the GARCH and ARCH models is that the former includes lagged condi-

tional variances, allowing for a potentially better ‘fit’ of the model, and achieving an impressive level

of parsimony, given that the GARCH(1,1) specification is often found to perform the best in empirical

applications. Bollerslev (1986) discusses maximum likelihood estimation as well as testing procedures for

GARCH (p,q) models. The most successful model, empirically, is the GARCH(1,1) model. An important

variant of this model, the so-called Integrated GARCH or IGARCH model is discussed in Engle and

Bollerslev (1986). Under IGARCH,
∑q

i=1 αi +
∑p

i=1 βi = 1, which implies a unit root in the volatility

equation.

In other key papers, Nelson (1990) and Nelson (1991) discuss the use of EARCH (i.e., exponential

ARCH) to approximate continuous time processes. Nelson (1991) points out that the GARCH model has

several limitations in empirical applications to financial markets. For instance, in the GARCH model,

volatility responds symmetrically to positive and negative residuals and therefore does not explain the

stylized leverage effect. In lieu of this, Nelson (1991) proposes the EARCH model, which is specified as

follows:

Xt = σtεt, and εt ∼ i.i.d with
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E(εt) = 0 , V ar(εt) = 1,

and

ln(σ2
t ) = αt +

∞∑
k=1

βkg(εt−k), β1 ≡ 1

where {αt}t=−∞,∞ and {βk}k=1,∞ are parameters. The choice for the functional form of g(·) is g(εt) =

θεt+γ(|εt|−E|εt|). This set-up allows the conditional variance process to respond asymmetrically to rises

and falls in stock prices. It is straightforward to verify this as when εt is positive g(εt) = (θ+γ)εt−γE(|εt|)

and when εt is negative g(εt) = (θ − γ)εt − γE(|εt|). In each case, the g(εt) is a linear function with a

different slope. In addition, Nelson (1991) points out that while for GARCH it is difficult to verify the

persistence of the shocks to the variance, in the EARCH model the stationarity and ergodicity of the

logarithm of the variance process is easily checked. Other modifications of the GARCH (1,1) model

include the GJR model proposed by Glosten et al. (1993). This model imposes structure that induces

asymmetry in shocks to returns in a different way. Namely, they define:

σ2
t = ω + αε2t + γε2t 1{εt≥0} + βσ2

t−1

Note that when γ < 0, positive return shocks increase volatility less than negative shocks. For a complete

list and discussion of these and a whole host of related models, see Bollerslev (2008), where he provides

a Glossary to ARCH. For models with multivariate specifications (see Bollerslev et al. (1988)).

An interesting aspect of the volatility literature is the connection between discrete time and continuous

time models. In the case of constant volatility, the classical result by Cox and Ross (1976) shows that the

limiting form of the jump process

dXt = µXtdt+ cXtdNt(λ)

as λ → 0 is the diffusion process

dXt = µXtdt+ σXtdWt

where σ is a function of c. Nt(λ) is a continuous time Poisson process with intensity λ, (i.e., dNt is

the number of jumps of Xt during dt and is Poisson-distributed with parameter λdt), cXt is the jump

amplitude, and Wt is a standard Brownian motion. Using this setup, Nelson (1990) bridges the gap

between discrete and continuous time stochastic volatility models by using AR(1) Exponential ARCH

and GARCH (1,1) models as approximations for continuous time processes of the variety discussed in the

next two sections.
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4.2.2. Nonparametric Realized Measures of Integrated Volatility

The above discussion serves as a natural starting point for our discussion of continuous time methods

used for volatility forecasting. As mentioned above, these methods often involve utilizing big data (e.g.,

high frequency and high dimensional financial data).

Using notation very similar to that used in earlier sections, we begin by characterizing the log-price of

a financial asset at continuous time t, as Yt. It is assumed that the log-price is a Brownian semi-martingale

process with jumps and that can be denoted as follows:24:

Yt = Y0 +

∫ t

0
µsds+

∫ t

0
σsdWs + Jt. (29)

In equation (29), µs the a predictable drift process, the diffusion term σs is a cádlág process, Ws is a

standard Brownian motion and Jt is a pure jump process. Jt can be defined as the sum of all discontinuous

log price movements up to time t,

Jt =
∑
s≤t

∆Ys.

When this jump component is a finite activity compound Poisson jump process, then:

Jt =

Nt∑
j=1

ξj ,

where Nt is a Poisson process with intensity λ, the jumps occur at the corresponding times given as

(τj)j=1,..,Nt and ξj is an i.i.d random variable measuring the size of jumps at time τj . The finite activity

jump assumption has been widely used in the financial econometrics literature, for example. Yt can be

decomposed into a continuous Brownian component, Y c
t , and a discontinuous (jump) component, Y d

t .

The ‘true variance’ of Yt can be given as,

QVt = [Y, Y ]t = [Y, Y ]ct + [Y, Y ]dt ,

where QV stands for quadratic variation. The variation due to the continuous component is:

[Y, Y ]ct =

∫ t

0
σ2
sds,

and the variation due to the discontinuous jump component is

[Y, Y ]dt =

Nt∑
j=1

ξ2j .

24We follow the setup and notation used in Corradi et al. (2011)
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Integrated volatility, which is the continuous part of QV , is denoted as:

IVt =

∫ t

t−1
σ2
sds, t = 1, ..., T,

where IV is the integrated volatility at day t. Since IV is unobservable, different realized measures

(estimators) of integrated volatility are used in empirical applications when forecasting volatility.

A wrinkle to this setup is the presence of market frictions in high frequency financial data, as has been

documented in recent literature. To take care of this, the observed log price process, say Xt can be given

as

Xt = Yt + ϵt

where Yt is the latent log price and ϵt captures market microstructure noise.

Now, consider M equi-spaced intradaily observations for each of T days for Xt, which yields a total

of MT observations. Namely, define:

Xt+j/M = Yt+j/M + ϵt+j/M , t = 0, .., T, j = 1, ..,M, (30)

where ϵt+j/M follows a zero mean independent process. Finally, the intraday return or increment of

process Xt is defined as:

∆jX = Xt+(j+1)/M −Xt+j/M

The noise containing realized measure, RMt,M of the integrated volatility is computed using process Xt

given in (30) and can be expressed as the sum of IV and measurement error N , i.e.

RMt,M = IVt +Nt,M .

RM can be used to estimate IV if the kth moment of the measurement error decays to zero at a fast

enough rate or there exists a sequence bM with bM → ∞ such that E(|Nt,M |k) = O(b
−K/2
M ), for some k

≥2.

Using this setup, and noting that parametric models have been shown to be misspecified when used

to capture volatilities implied by option pricing and other financial return variables, it is perhaps not

surprising that substantial effort has been made to construct model free estimators of volatility. This

is feasible, given availability of high frequency data, as first explained in Andersen et al. (2001). The

measure introduced in this paper, termed Realized Volatility (RV), is constructed by summing over intra-

day squared returns. The authors show that RV is an error free estimator of integrated volatility (i.e.,

IV can be consistently estimated using RV) in the absence of noise and jumps. On the other hand,
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when the sampling frequency of the data is relatively high, microstructure noise creates a bias in the

volatility estimation procedure. Zhang et al. (2005), Zhang et al. (2006) and Kalnina and Linton (2008)

solve this problem with microstructure noise robust estimators based on sub-sampling with multiple

time scales. Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen et al. (2011) on the other hand, use

kernel based estimators to account for the microstructure noise. When estimating integrated volatility in

the presence of jumps, the jump components should be separated from quadratic variation. Barndorff-

Nielsen and Shephard (2003) and Barndorff-Nielsen and Shephard (2004) provide asymptotically unbiased

integrated volatility estimators, called bipower and tripower variation, which are robust to the presence

of jumps. Aı̈t-Sahalia et al. (2009) propose a threshold method to identify and truncate jumps and

develop another consistent nonparametric jump robust estimator of integrated volatility. Corsi et al.

(2010) introduces threshold bipower variation by combining the concepts from Barndorff-Nielsen and

Shephard (2003) and Mancini (2009). Jacod et al. (2014) estimate local volatility by using the empirical

characteristic function of returns to remove bias due to jump variation. When combining both jumps

and microstructure noise in the price process, Fan and Wang (2007) propose a wavelet-based multi-scale

approach to estimating integrated volatility. Podolskij et al. (2009) design modulated bipower variation,

an estimator that filters the impact of microstructure noise and then use bipower variation for volatility

estimation. Andersen et al. (2012) use the concept of ‘nearest neighbor truncation’ to establish jump and

noise robust volatility estimators. Brownlees et al. (2016) create truncated two scaled realized volatility

by adopting a jump signaling indicator as in Mancini (2009) and noise robust sub-sampling as in Zhang

et al. (2005). In addition to the above mentioned work, discussion regarding nonparametric estimation

of integrated volatility and functionals of volatility can also be found in Barndorff-Nielsen et al. (2006),

Mykland and Zhang (2009), Todorov and Tauchen (2012), Hautsch and Podolskij (2013), Jacod et al.

(2013), Jing et al. (2014) and Jacod et al. (2019). In the next section, we review some of the most

commonly used realized measures.25

Realized Volatility (RV) as developed in Andersen et al. (2001) is one of the first empirical measures

that used high-frequency intra-day returns to compute daily return variability without having to explicitly

model the intra-day data. The authors show that under suitable conditions RV is an unbiased and highly

efficient estimator of QV . By extension it can be shown that in the absence of jumps or when jumps

populate the data infrequently, RV converges in probability to IV as M −→ ∞.

25For further details, refer to Mukherjee et al. (2020).
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Before defining RV, it should be noted that RV is widely used in HAR-RV forecasting models, such

as those first developed by Corsi (2009). The basic HAR-RV model is specified as follows:

ϕ(RVt,t+h) = β0 + βdϕ(RVt) + βwϕ(RVt−5,t) + βmϕ(RVt−22,t) + ϵt+h,

where daily RV, t+h days ahead, is forecast using daily (ϕ(RVt)), weekly (ϕ(RVt−5,t)), monthly (ϕ(RVt−22,t))

RV measures, and ϵt+h is a stochastic disturbance term. Here, ϕ(·) is usually set equal to a linear, square

root, or log function, so that in its simplest form this is just a linear regression of future RV on past daily,

weekly and monthly RV. Volatility forecasting models using this sort of regression can also be constructed

by replacing RV with other realized measures such as those discussed below.

So how do we estimate RV? This is the simplest realized measure, and is constructed by summing

squared intraday returns, as mentioned above. Namely, define:

RVt,M =

M−1∑
j=1

(Xt+(j+1)/M −Xt+j/M )2.

Realized Bipower Variation (BPV) is an estimator originally introduced in Barndorff-Nielsen and

Shephard (2004). In their paper, these authors demonstrate how to untangle the continuous component

of quadratic variation from its discontinuous component (jump component), using their BPV estimator,

which was one of the first asymptotically unbiased estimators of IV which was robust to the presence of

price jumps. The BPV realized measure takes the following form:

BPVt,M = (µ1)
−2

M−1∑
j=2

|∆jX||∆j−1X|,

where ∆jX is the same as in (4.2.2) and µ1 = 2
1
2
Γ(1)

Γ( 1
2
)
.

Tripower Variation (TPV) is another consistent estimator of IV in the presence of finite activity jumps.

However since BPV is subject to finite sample jump distortions or upward bias, BPV was proposed by

Barndorff-Nielsen and Shephard (2004). This realized measure utilizes products of the (lower order)

power of three adjacent intra-day returns, and is theoretically more efficient than BPV, also it is also

more vulnerable to the effects of microstructure noise than BPV . TPV is defined as follows:

TPVt,M = (µ 2
3
)−3

M−1∑
j=3

|∆jX|2/3|∆j−1X|2/3|∆j−2X|2/3,

where ∆jX is defined above and µ 2
3
= 2

1
3
Γ( 5

6
)

Γ( 1
2
)
.

Two Scale Realized Volatility (TSRV) was developed after it was found that when the sampling interval

of the asset prices is small, microstructure noise issues become more prominent and Realized Volatility
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ceases to function as a robust volatility estimator. Due to the bias introduced by the market microstructure

noise in the finely sampled data, longer time horizons were initially preferred by practitioners when

contructing realized measures. Why is this? Because it was found that ignoring microstructure noise

works well for intervals longer than 10 minutes. However sampling over lower frequencies does not fully

correct for the effects of noise on volatility estimation. As a solution, TSRV was introduced by Zhang

et al. (2005). This estimator combines estimators obtained over two time scales, avg and M , and is an

unbiased and consistent, microstructure noise robust estimator of IV in the absence of jumps. It takes

the following form:

TSRVt,M = [X,X]avg − 1

K
[X,X]M ,

where

[X,X]mi =

mi−1∑
j=1

(Xt+((j+1)K+i)/M −Xt+(jK+i)/M )2, i = 1, ..,K & mi =
M

K
,

[X,X]avg =
1

K
ΣK
i=1[X,X]mi ,

and

[X,X]M =
M−1∑
j=1

(Xt+(j+1)/M −Xt+j/M )2,

where K = cM2/3 is the number of subsamples, M
K is subsample size, c > 0 is a constant and M is the

number of equi-spaced intraday observations.

Multi-Scale Realized Volatility (MSRV) was developed because although the TSRV estimator has many

desirable properties, is not efficient. The rate of convergence for TSRV to the true volatility (IV ) in the

absence of jumps is of the order M−1/6. The MSRV estimator proposed in Zhang et al. (2006) is a

microstructure noise robust measure which converged to IV (in the absence of jumps) at the rate of

M−1/4. While TSRV uses two time scales, MSRV uses N different time scales. MSRV is defined as

follows:

MSRVt,M =

N∑
n=1

an[X,X](M,Kn), n = 1, .., N,

where

an = 12
n

N2

n/N − 1/2− 1/(2N)

1− 1/N2
,

N∑
n=1

an = 1 ,

N∑
n=1

an/n = 0,

and

[X,X](M,Kn) =
1

Kn

Kn∑
l=1

mn,l−1∑
j=1

(Xt+((j+1)Kn+l)/M −Xt+(jKn+l)/M )2.

Here l = 1, ..,Kn and mn,l =
M
Kn

. We take N = 3,K1 = 1,K2 = 2,K3 = 3.
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Realized Kernel (RK) volatility is an estimator introduced in Barndorff-Nielsen et al. (2008). As the

name suggests, it is a realized kernel type consistent measure of IV in the absence of jumps. It is robust

to endogenous microstructure noise and for particular choices of weight functions it can be asymptotically

equivalent to TSRV and MSRV estimators, or even more efficient. RK is constructed using the following

equation:

RKt,M = γ0(X) +
H∑

h=1

κ(
h− 1

H
){γh(X) + γ−h(X)},

where

γh(X) =

M−1∑
j=1

(Xt+(j+1)/M −Xt+j/M )(Xt+(j+1−h)/M −Xt+(j−h)/M ).

Here c is a constant. One can use the Turkey-Hanning2 kernel with κ(x) = sin2{π/2(1 − x)2} and

H = cM1/2.

Truncated Realized Volatility (TRV) is one of the first volatility measures that tries to estimate IV

by identifying when price jumps greater than an adequately defined threshold occur, as discussed in Aı̈t-

Sahalia et al. (2009). The truncation level for the jumps is chosen in a data-driven manner. The price

jump robust measure is:

TRVt,M =

M−1∑
j=1

|∆jX|21{|∆jX|≤α∆ϖ
M},

where

α = 5

√√√√M−1∑
j=1

|∆jX|21{|∆jX|≤∆
1/2
M }.

Here one might set ϖ = 0.47, for example, and ∆M = 1/M .

Modulated Bipower Variation (MBV) is introduced in Podolskij et al. (2009) and consistently estimates

IV , is robust to market microstructure noise, and is also robust to finite activity jumps. This realized

measure is constructed as follows:

MBVt,M =
(c1c2/µ

2
1)mbvt,M − ϑ2ω̂

2

ϑ1
,

where

ϑ1 =
c1(3c2 − 4 +max((2− c2)

3, 0))

3(c2 − 1)2
, ϑ2 =

2min((c2 − 1), 1)

c1(c2 − 1)2
,

mbvt,M = ΣB
b=1|X̄

(R)
b ||X̄(R)

b+1|

and

X̄
(R)
b =

1

M/B −R+ 1
Σ
bM/B−R
j=(b−1)M/B(Xt+(j+R)/M −Xt+j/M ).
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Here c1 = 2, c2 = 2.3, R ≈ c1M
0.5, B = 6, µ1 = 0.7979, and ω̂2 = 1

2MRVt,M .

Subsampled Realized Kernel (SRK) is an estimator due to Barndorff-Nielsen et al. (2011) and is con-

structed by combining the concepts of subsampling (Zhang et al. (2005)) and realized kernels (Barndorff-

Nielsen et al. (2008)). The main benefit of subsampling in our context is that it can reduce inefficiency

stemming from the poor selection of kernel weights that might be the case when using realized kernel

estimators. SRK is constructing as follows:

SRKt,M =
1

S

S∑
s=1

Ks(X),

where

Ks(X) = γs0(X) +
H∑

h=1

κ(
h− 1

H
){γsh(X) + γs−h(X)},

γsh(X) =

M
S∑

j=1

xsjx
s
j−h,

and

xsj = Xt+(j+ s−1
S

)/M −Xt+(j+ s−1
S

−1)/M ,

Here one can use the smooth Turkey-Hanning2 kernel function with κ(x) = sin2{π/2(1 − x)2}, S = 13,

and H = 3.

MedRV and MinRV are estimators that are alternatives to Realized Bipower Variation and Tripower

Variation, as discussed in Andersen et al. (2012). Both are robust to jumps and/or microstructure noise

and use ‘nearest neighbor truncation’. The basic concept behind these measures is that neighboring

returns control the level of truncation of absolute returns. MinRV compares and takes the minimum of

two adjacent absolute returns, MedRV takes the median of three adjacent absolute returns and carries

out two-sided truncation. Unlike the typical truncated realized measures as in Corsi et al. (2010), these

new measures do not require the selection of an ex-ante threshold. They are defined as follows:

MinRVt,M =
π

π − 2
(

M

M − 1
)

M−1∑
j=1

min(|∆jX|, |∆j+1X|)2

and

MedRVt,M =
π

6− 4
√
3 + π

(
M

M − 2
)
M−1∑
j=2

med(|∆j−1X|, |∆jX|, |∆j+1X|)2,

where ∆jX is defined above.

All of the above estimators are nonparametric, in the sense that parametric models need not be

specified, although when constructing forecasts, one still specifies a parametric forecasting model, as

discussed above in the context of HAR-RV forecasting regressions.
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In general, there are certain advantages to specifying and estimating parametric models at all stages

when forecasting and simulating volatility. One obvious advantage is that pathwise simulation and fore-

casting that retains specific dependence is feasible only under parametric model specification. For this

reason, we conclude this section by discussing widely used stochastic volatility models.

4.2.3. Parametric Continuous Time Models

Many high-frequency financial time series appear to be a mixture of sudden relatively large changes and

smooth small changes. This image suggests modeling a high-frequency financial time series as a mixture

of a discrete jump process and a continuous diffusion process. A jump-process Jt is a discrete process

specified by a distribution, ν, for the magnitudes of the jumps and a distribution, λ(Xt), for the intensity

with which jumps occur, as discussed above. A jump-diffusion process is the sum of a continuous diffusion

process and a jump process,

dXt = µ(Xt, t, θ)dt+ σ(Xt, t, θ)dW + dJt

One pioneering work which incorporates jumps into continuous time processes is Merton (1976), where

he models the continuous component of the log price process to be Gaussian as in the case of geometric

Brownian motion. The magnitude of jumps also follows a Gaussian distribution, and jumps follow Poison

distribution in his paper. Newer developments in this area do not “append” a “discrete” jump process

onto the diffusion, but instead specify the jumps using other means, such as via the use of Levy processes.

A natural refinement of this model is the stochastic volatility model. These models were first intro-

duced by Harvey et al. (1994) in discrete time. Stochastic volatility implies that unobserved volatility

follows another stochastic process. For example, one specification could be

dXt = (α+ βXt)dt+ σdW1t,

where the volatility process follows:

dσ2
t = κ(ϑ− σ2

t )dt+ δσtdW2t,

with Cov(dW1t, dW2t) = ρdt.

CIR type Stochastic Volatility Model: Andersen and Lund (1997) estimate the generalized Cox-

Ingersoll-Ross model discussed above with:

dXt = κ1(α−Xt)dt+ σtX
β
t dW1t,
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d log σ2
t = κ1(α− log σ2

t )dt+ δdW2t,

where the W (·) terms are Brownian motions, all all other terms are constants except for the price and

voltility measures, Xt and σt.

Mixed Stochastic Volatility, Jump Diffusion Model: These models arise from the application of

spectral GMM in Chacko and Viceira (2003), where the return/volatility process is specified as:

dXt = (µ− σ2
t

2
)dt+ σtdW1t + [exp(Ju)− 1]dNu(λu) + [exp(−Jd)− 1]dNd(λd)

dσ2
t = κ(α− σ2

t )dt+ δσtdW2t,

where λu, λd are jump intensity parameters and are constant, and where Ju and Jd >0 are stochastic

jump magnitudes that follow exponential distributions, i.e.

f(Ju) =
1

ηu
exp(

−Ju
ηu

),

f(Ju) =
1

ηd
exp(

−Jd
ηd

).

In the option pricing literature, many models are nested in the following data generating process which,

allows for jumps in both equations

dXt = µtdt+ σtXtdW1t + dJ1t

dσ2
t = κ(α− σ2

t )dt+ δσt(ρdW1t +
√

1− ρ2dW2t) + dJ2t

where W1t and W2t are independent Brownian motions, and J1t and J2t are jump processes. Popular

models that are nested in this class include those in Heston (1993), Bates (2000), Chernov and Ghysels

(2000). and Pan (2002).

A natural way to forecast volatility in the above parametric models involves constructing predictive

volatility densities using simulated data, after estimating the parameters of the models. This is discussed

in detail in Corradi et al. (2009) and Corradi et al. (2011).

4.2.4. Big Data Methods in Continuous Time, Factor Estimation and Volatility Prediction

Using The LASSO and the Elastic Net for Variable Selection - Machine Learning IV

This section summarizes the results reported in Cheng et al. (2021) on volatility forecasting using factors

estimated with high frequency and high dimensional financial datasets. The basic idea is to use realized

measures (RMs) in a continuous time factor representation from which factors are extracted and sub-

sequently incorporated in factor augmented forecasting regressions. While the setup used is similar in
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some regards to the setup used in the previous sections, key underlying features are different, as is the

notation used. For this reason, we start at the very beginning by considering a d-dimensional process,

X, consisting of d asset log-prices. Assume that X follows an Itô-semimartingale defined on the filtered

probability space
(
Ω,F, (Ft)t≥0,P

)
, and has the following representation:

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs

+

∫ t

0

∫
{|x|≤ϵ}

x(µ− ν)(ds, dx) +

∫ t

0

∫
{|x|≥ϵ}

xµ(ds, dx),

where bt is the instantaneous drift term, σt is the spot covariance, and both are adapted, càdlàg, and locally

bounded. Additionally, Wt is a multidimensional standard Brownian motion, µ is a random jump measure

with compensator ν, and ϵ > 0 is an arbitrary threshold. For more details on Itô-semimartingales and

continuous-time asset price modeling, see Aı̈t-Sahalia and Jacod (2014) and the references cited therein.

As discussed above, various realized measures have been developed to estimate latent volatility on a

fixed interval [0, T ], using high-frequency intraday data. For instance, recall that realized volatility, one

of the most widely known measures, is given by:

RVt =

⌊t/∆n⌋∑
i=1

(
∆n

i X
j
)2

, ∀t ∈ [0, T ], j = 1, ..., d, (31)

where ⌊·⌋ is the floor function and ∆n
i X

j = Xj
i∆n

−Xj
(i−1)∆n

is the ith intraday return for jth asset in X,

with ∆n defined as an equally-spaced sampling interval that shrinks to zero. It is well-known that when

asset prices are continuous on a fixed interval, [0, T ], we have that:

⌊t/∆n⌋∑
i=1

(
∆n

i X
j
)2 P−→

∫ t

0

(
σj
s

)2
ds, ∀t ∈ [0, T ], j = 1, ..., d,

as ∆n → 0, where σj
s is the spot volatility for jth asset.

However, when asset prices are discontinuous on [0, T ]:

⌊t/∆n⌋∑
i=1

(
∆n

i X
j
)2 P−→

∫ t

0

(
σj
s

)2
ds+

∑
0≤s≤t

(
∆Xj

s

)2
, ∀t ∈ [0, T ], j = 1, ..., d,

where ∆Xj
s = Xj

s − Xj
s− ̸= 0, if and only if the jth asset, Xj , jumps at time s. To separate integrated

volatility from jump variation, one might use the threshold technique developed by Mancini (2001, 2009)

to construct truncated realized volatility (TRV), defined as:

TRVt =

⌊t/∆n⌋∑
i=1

(
∆n

i X
j
)2

1{|∆n
i X

j |≤c∆ϖ
n }

P−→
∫ t

0

(
σj
s

)2
ds, (32)
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for some ϖ ∈ (0, 1/2), or use the multipower variation (MPV) estimator developed by Barndorff-Nielsen

and Shephard (2004), where:

MPVt = ∆1−p+/2
n

⌊t/∆n⌋−k+1∑
i=1

|∆n
i X

j |p1 · · · |∆n
i+k−1X

j |pk P−→ mp1 · · ·mpk

∫ t

0
|σj

s|p
+
ds, (33)

with p1, p2, . . . , pk ≥ 0, p+ = p1 + · · · + pk and mp = E[|N (0, 1)|p]. One can also combine these two

methods and use a truncated multipower variation estimator (see Corsi et al. (2010)). This allows for

different components of quadratic variation to be separately analyzed.

To facilitate the analysis of large dimensional datasets, we further assume that the continuous part

of asset log-prices panel follows a continuous-time factor model on [0, T ]. Namely, define Yt := X0 +∫ t
0 bsds+

∫ t
0 σsdWs as the continuous part of X, and assume the following factor structure for Yt:

Yt = ΛtFt + Zt, (34)

where Ft is an r-dimensional (r < d) unobservable common factor, Zt is an idiosyncratic component, and

Λt is a d×r factor loading matrix, each element of which is adapted and has càdlàg paths almost surely.

Here, we specifically call Ft the common price factor, in order to distinguish it from the common volatility

factor defined later. The common price factor, Ft, and the idiosyncratic component, Zt, are assumed to

follow continuous Itô-semimartingales, and are given by:

Ft = F0 +

∫ t

0
hsds+

∫ t

0
ηsdBs (35)

and

Zt = Z0 +

∫ t

0
gsds+

∫ t

0
γsdB̃s,

where Bs and B̃s are independent Brownian motions. All of the coefficient processes, h, η, g and γ are

adapted to (Ft)t≥0 and have càdlàg paths, almost surely. The above factor model and general settings

are discussed in Aı̈t-Sahalia and Xiu (2017).

Now that we have specified a common latent factor model, it remains to take it to the data (i.e.,

construct volatility forecasts). In order to do this a couple of further ingredients are needed. First, we

specify forecasting models. These follow the structure of factor-augmented regressions that are widely

exploited in the macroeconomic forecasting literature (see, e.g., Stock and Watson (2002a,b, 2006), Bai

and Ng (2006, 2008), and the references cited therein). Namely, consider:

yt+h = α′Wt + β′Ψt + εt+h, (36)
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where yt is the daily integrated volatility of a target asset being forecasted and h is the forecasting horizon.

Wt is a set of observable variables, such as lags of yt. Ψt contains unobservable variables, or usually called

the latent factors. In the context of volatility forecasting, we define the latent predictors, Ψt, based on

the factor structure assumed in (34) and (35):

Ψt =

∫ t

0
diag(Λsηsη

′
sΛ

′
s)ds

and name it the common volatility factor (also called the IV factors in the sequel) for a natural reason:

ηs in the above integrand is the spot volatility of Ft (see (35)). As a result, Ψt is defined as the integrated

volatility of common price factor Ft. Note that one cannot disentangle Λ from η unless certain identifi-

cation conditions, such as ηη′ = Ir, are imposed. However, in the context of forecasting, we don’t have

to disentangle these components from Ψt. This is because we are only interested in Ψt, which is the IV

matrix of the r uncorrelated common factors in our setup. In summary, it is worth stressing that unlike

many other applications of factor-augmented models, we do not directly use weighted common factors,

ΛtFt, extracted from a large panel of observable data. Instead, what we actually use as predictors in our

forecasting models are the estimated IVs of these common factors (i.e. the Ψt).

Of note is that model (36) nests the large family of heterogeneous autoregressive (HAR) type models

that are widely used in the literature, including the HAR-RV model discussed earlier. We write a variant

of this model as follows:

RMt+h = α0 + α1RMt + α2RM[t,t−4] + α3RM[t,t−21] + ϵt+h, (37)

where RM represents a realized measure of integrated volatility for a target asset, and RM[t,t−p] is the

average of RM’s, over the most recent p + 1 days, i.e. RM[t,t−p] =
1

p+1

∑p
i=0RMt−i. As a result, the

second and the third variables on the right hand side of (37) represent weekly and the monthly average

RM values, respectively. In practice, one might use RV, TRV, or MPV as defined in (31), (32) and

(33) as the realized measures in above HAR model. Let Wt = [1 RMt RM[t,t−4] RM[t,t−21]]
′ or Wt =

[1 RMt RM[t,t−4] RM[t,t−21] Zt]
′, where Zt is a vector of predictors that may be further included in the

forecasting model in equation(36).

Heuristically, model (36) considered in this paper combines two distinct sources of information for

volatility prediction. The first part, Wt, follows the HAR structure, exploiting time series information

on the target asset itself. The second part, Ψt, collects further predictive power from broader sources of

information, i.e. from a large panel of variables other than the target asset.

Additionally, dimension reduction can be achieved in this setup by simply applying LASSO or elastic
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net shrinkage on the IV estimates of all assets in order to first obtain a subset of assets whose IVs are

relevant to predicting the target asset’s IV. Then, one can apply PCA or sparse PCA (SPCA) to this

selected panel of high-frequency asset returns in order to estimate common prices factors, Ft, from which

the common IV factors, Ψt, are estimated. Finally, these IV factors are incorporated into model (36) to

forecast IVs for the target asset.

Recall that the LASSO (see Tibshirani (1996)) and the elastic net (see Zou and Hastie (2005)) can be

interpreted as regularized or penalized regression methods. To illustrate, consider a regression of yt+h on

Wt and χt, where yt+h and Wt are defined in (36), and χt is a vector of integrated volatility on day t, for

all assets in Xt. The LASSO estimator is the solution to the following problem:

min
ϕ

∑
t

{∣∣∣∣∣∣∣∣yt+h − α′Wt −
∑
j

ϕjχj,t

∣∣∣∣∣∣∣∣2 + λ
∑
j

|ϕj |

}
,

where the ϕ’s are regression coefficients in a standard penalized regression, and all other parameters are

defined above. Similarly, the elastic net estimator is a solution to the following problem:

min
ϕ

∑
t

{∣∣∣∣∣∣∣∣yt+h − α′Wt −
∑
j

ϕjχj,t

∣∣∣∣∣∣∣∣2 + λ
∑
j

((1− θ)

2
ϕ2
j + θ|ϕj |

)}
, (38)

where θ ∈ [0, 1]. Of note is that when θ = 1, the elastic net is equivalent to the LASSO. Also, as

θ shrinks toward 0, elastic net estimators approach those obtained via ridge regression. Furthermore,

note that LASSO imposes an L1-norm penalty on coefficients in the model, while the elastic net induces

double shrinkage, in the sense that it imposes a linear combination of L1-norm and L2-norm penalties

on coefficients in the model. Finally, recall that it is the imposition of the L1-norm penalty that induces

shrinkage to zero of some coefficients in the regression model; and it is the non-zero coefficients in the

solution to these minimization problems that are used to select the final set of variables for use when

constructing factor estimates. For further discussion of shrinkage methods in economics and finance, see

Swanson and Xiong (2018), and for further discussion of the methods discussed here, refer to the paper

from which this example is drawn (i.e. Cheng et al. (2021)).

Recall also that PCA and SPCA procedures, are both easy to implement. To start, consider the

following covariance matrix estimator, defined on a fixed interval, [0, T ]:

Σ̂t =
1

t

⌊t/∆n⌋∑
i=1

{
(∆n

i X)(∆n
i X)′

}
1{∥∆n

i X∥≤c∆ϖ
n }, ∀t ∈ [0, T ].

One carries out PCA by applying an eigenvalue-eigenvector decomposition to Σ̂t, yielding r estimated

eigenvalues, in descending order, say λ̂1>λ̂2>· · ·>λ̂r, and corresponding estimated eigenvectors, ξ̂1, ξ̂2,· · · ,
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ξ̂r. The first r principal components on the fixed interval are estimated as follows:

∆̂n
i F j = ξ̂′j

(
∆n

i X
)
1{∥∆n

i X∥≤c∆ϖ
n }, j = 1, · · · , r.

With these estimated principal components, latent common volatility factors on day t can subsequently

be estimated as follows:

Ψ̂j,t =
1

t

⌊t/∆n⌋∑
i=1

(
∆̂n

i F j

)2
, j = 1, · · · , r.

Thus, for any j = 1, · · · , r, we have Ψ̂j,t = ξ̂′jΣ̂tξ̂j = λ̂j ξ̂
′
j ξ̂j , which is equivalent to λ̂j , if the eigenvector has

unit-length. In general, PCA yields nonzero factor loadings for (almost) all variables, which exacerbates

difficulty in interpretation, and can induce noisiness in estimated factors, especially when ultra high

frequency data are used. To avoid these drawbacks, and to induce further parsimony, one can instead

utilize SPCA. The key to SPCA is that it yields sparse factor loadings, in the sense that loadings may be

identically zero, a feature not feasible in the context of certain types of shrinkage on the L2-norm, such

as that associated with ridge regression.

5. Methods for Evaluating Return and Volatility Forecasts

There is a vast literature discussing methods for evaluating return and volatility forecasts. Of course,

if the objective of a practitioner or researcher is to maximize investment performance, then a natural

approach is to evaluate the performance of forecasts and to choose the ‘best’ forecasting model by simply

comparing out-of-sample investment performance across models. In this scenario one might estimate in-

sample parameters of the models used to construct the forecasts that are in turn used to make investment

decisions by using a ‘profit’ loss function rather than a least squares or maximum likelihood loss function

for parameter estimation.

In addition to assessing profits associated with using certain forecasts after implementing a trading

rule, say, forecast evaluation can also be done using standard point based measures like mean square

forecast errors, mean absolute forecast error deviations, probability scores, contingency tables, or a whole

host of other statistics. For a discussion of a few of these, see Stekler (1991) and Stekler (1994). Forecast

evaluation can also be done using predictive density and conditional distribution accuracy testing and

model selection, such as the methods outlined in Corradi et al. (2009) and Corradi et al. (2011). For

a comprehensive discussion of methods for evaluating return and volatility forecasts, see Corradi and

Swanson (2006) and all of the other papers in the Handbook of Forecasting series in which this paper is

published. In order to illustrate different approaches used when assessing forecasts, we briefly describe
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two methods used for predictive accuracy testing and model selection.

First, consider the so-called Diebold-Mariano test. In the context of forecast model selection, Diebold

and Mariano (1995) propose a test for the null hypothesis of equal predictive ability. In its simplest

form, the Diebold and Mariano test allows for nondifferentiable loss functions, but does not explicitly

account for parameter estimation error, instead relying on the assumption that the in-sample estimation

period grows more quickly than the out-of-sample prediction period, so that parameter estimation error

vanishes asymptotically. West (1996) takes the more general approach of explicitly allowing for parameter

estimation error, although at the cost of assuming that the loss function used in test statistic construction

is differentiable. Let u0,t+h and u1,t+h be the h−step ahead prediction error associated with predictions

of yt+h, using information available up to time t. For example, for h = 1, u0,t+1 = yt+1−κ0(Z
t−1
0 , θ†0), and

u1,t+1 = yt+1−κ1(Z
t−1
1 , θ†1), where Z

t−1
0 and Zt−1

1 contain past values of yt and possibly other conditioning

variables, and where the κ are functions that may be linear, for example. Assume that the two models are

nonnested (i.e. Zt−1
0 not a subset of Zt−1

1 , and vice-versa and/or the function κ1 ̸= κ0). As is well known,

the ranking of models based on their predictive accuracy depends on the loss function used, under generic

misspecification (i.e., for the case where all models are approximations of the true underlying model).

Hereafter, denote the loss function as g(·), and let T = R+P, where only the last P observations are used

for model evaluation. Under the assumption that u0,t and u1,t are strictly stationary, the null hypothesis

of equal predictive accuracy is specified as:

H0 : E(g(u0,t)− g(u1t)) = 0

and

HA : E(g(u0,t)− g(u1t)) ̸= 0

In practice, we do not observe u0,t+1 and u1,t+1, but only û0,t+1 and û1,t+1, where ûi,t+1 = yt+1 −

κ0(Z
t
0, θ̂0,t), and where θ̂i,t is an estimator constructed using observations from 1 up to t, t ≥ R, in the

recursive window model estimation estimation case, and between t − R + 1 and t in the rolling window

model estimation case, for i = 1, 2. For brevity, we consider the recursive scheme. Note that the rolling

scheme can be treated in an analogous manner. Of crucial importance is the loss function used for

estimation. In fact, if we use the same loss function for estimation and model evaluation, the contribution

of parameter estimation error is asymptotically negligible, regardless of the limit of the ratio P/R as

T → ∞. Here, for i = 0, 1, we set:

θ̂i,t = arg min
θi∈Θi

1

t

t∑
j=1

q(yj − κi(Z
j−1
i , θi)), t ≥ R
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In the sequel, we assume that g is continuously differentiable. The case of non-differentiable loss functions

is treated by McCracken (2004). The Diebold and Mariano statistic that one uses in this framework to

test the above hypotheses is:

DMP =
1√
P

1

σ̂P

T−1∑
t=R

(g(û0,t+1)− g(û1,t+1)) .

This statistic has a standard normal limiting distribution under the null hypothesis when q(·) = g(·) or

when parameter estimation error vanishes asymptotically, as discussed in Corradi and Swanson (2006).26

The above discussion is for the case of one-step ahead prediction errors. All results carry over to the

case of h > 1. However, in the multistep ahead case, one needs to decide whether to compute ‘direct’

h−step ahead forecast errors (i.e. ûi,t+h = yt+h − κi(Z
t−h
i , θ̂i,t)) or to compute iterated h−ahead forecast

errors (i.e. first predict yt+1 using observations up to time t, and then use this predicted value in order

to predict yt+2, and so on).

Now, consider the reality check or data snooping test due to White (2000). White proposes an approach

for choosing amongst many different models. Suppose there are m models, and we select model 1 as our

benchmark (or reference) model. Models i = 2, ...,m are called the competitor (alternative) models.

Typically, the benchmark model is either a simple model, our favorite model, or the most commonly used

model. Given the benchmark model, the objective is to answer the following question: Is there any model,

amongst the set of m − 1 competitor models, that yields more accurate predictions (for the variable of

interest) than the benchmark? As above, let the forecast error be ui,t+1 = yt+1 − κi(Z
t, θ†i ), and let

ûi,t+1 = yt+1 − κi(Z
t, θ̂i,t), where κi(Z

t, θ̂i,t) is the conditional mean function under model i, and θ̂i,t is

defined as above. Assume that the set of regressors may vary across different models, so that Zt is meant

to denote the collection of all potential regressors. Define the statistic

SP = max
k=2,...,m

SP (1, k),

where

SP (1, k) =
1√
P

T−1∑
t=R

(g(û1,t+1)− g(ûk,t+1)) , k = 2, ...,m,

26In this setup, recall that if g(·) is the quadratic loss function, then:

g(û0,t)− g(û1,t) = û2
0,t − û2

1,t.

This example corresponds to the case where the mean square forecast error of the two competing models is being compared.
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Thus, our statistic is simply the “max” of all of the pairwise DM test statistics constructed using

model 1 as the “benchmark”.

The test hypotheses are formulated as

H0 : max
k=2,...,m

E(g(u1,t+1)− g(gk,t+1)) ≤ 0

HA : max
k=2,...,m

E(g(u1,t+1)− g(uk,t+1)) > 0,

where uk,t+1 = yt+1 − κk(Z
t, θ†k,t), and θ†k,t denotes the probability limit of θi,t. Thus, under the null

hypothesis, no competitor model, amongst the set of the m − 1 alternatives, can provide a more (loss

function specific) accurate prediction than the benchmark model. On the other hand, under the alterna-

tive, at least one competitor (and in particular, the best competitor) provides more accurate predictions

than the benchmark. Given nonestedness, White shows that under H0, maxk=2,...,m SP (1, k) is a zero

mean Gaussian process. Evidently, the White statistic is a ‘max’ statistic which is simply the maximum

of m pairwise Diebold Mariano statistics calculated by comparing each competitor model with Model 1.

Valid critical values for use in implementation of this test can be constructed quite easily using the block

bootstrap, as discussed in Corradi and Swanson (2006). For a detailed discussion of this test, refer to

Corradi and Swanson (2007).

5.1. Methods for Evaluating Investments

Ultimately, the ‘proof is in the pudding’ when it comes to evaluating investment performance. Namely,

how much wealth is generated, and how much risk is taken under alternative investment scenarios. If all

that one cares about is wealth, in the sense that any measure of risk is tolerable, then one need simply

look at the dollar value of alternative investments made using predictions from alternative forecasting

models and methods. If one is interested in measuring investment performance based on an assessment

of both mean and variance considerations (i.e., by considering both accumulated wealth and the risk

associated with the investment), then mean-variance trade-offs are important, as discussed above. As

discussed in Makridakis et al. (2024), the investment component of the M6 competition is decided by

using a variant of the well known Sharp and Information Ratios. The particular statistic used in their

paper is called IR, and is defined to be the ratio of portfolio returns ret to the standard deviation of

portfolio returns, sdp, or IR = ret
sdp When applying these sorts of measures, one must choose the period

over which returns and risk are calculated. Needless to say, many variants of the above measure as well

as other related measures are widely used by practitioners and researchers. Moreover, the particular

measure used is usually determined on a case by case basis depending on the stated objectives or goals
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of the investor. For example, risk tolerance may play an important role in portfolio optimization. The

performance measure used to evaluate a portfolio where particularly risky stocks are not included may

be quite different from that used to evaluate portfolios that include only risk free assets such as U.S.

treasuries.

It is also worth noting that approaches used for calibrating and estimating forecasting models can

be connected in a natural way to investment performance evaluation. In particular, note that many

forecasting models of the variety discussed above are estimated using standard statistical methods such

as maximum likelihood, simulated maximum likelihood, and methods of moments. Take the case of

maximum likelihood (ML). In its simplest form, given a number of assumptions, ML equates with least

squares, which is an estimator often used to obtain coefficient estimates of linear models. However, one

might ask why least squares is used to calibrate forecasting models when the ultimate objective is profit

maximization, say. For example, assume that the investment objective is simply to maximize dollar

wealth based on a given portfolio. In that case, rather than estimating model parameters using least

squares, one might estimate them using an objective function that is based on the performance of the

model when constructing forecasts for use in building an investment portfolio. Namely, directly calibrate

the forecasting model to maximize investment returns. Of course, if one estimates forecasting models

using an estimator other than least squares or nonlinear least squares, say, certain optimality properties

associated with the least squares estimator might be lost. That said, one might not care about such issues

if the overarching objective of an exercise is to maximize returns.

6. Empirical Illustration: Forecasting Returns Using Latent Factor and

Variable Selection Methods

In this illustration, we construct daily return forecasts for 391 constituents of the S&P500 index at

h =1-day, 5-day, and 20-day ahead prediction horizons. All data are collected from the well-known TAQ

database. The 391 stocks for which we collect price and return data include the constituents of the S&P

500 index that were in the index for our entire sample period of February 28, 2009 - January 28, 2019

(2533 trading days). In our analysis, all forecasting models are estimated using rolling (fixed) windows of

1259 days.

The forecasting models that we evaluate are summarized in Table 1, and all have the following func-

tional form:

rt+h = α+ I{p > 0}(
p∑

i=1

βirt−i+1) + γ′Ft + ϵt+h, (39)
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where rt+h, is the log return for a given stock, Ft is an r−dimensional vector of estimated factors,

constructed using (sparse) principal components analysis (PCA), ϵt+h is a stochastic disturbance term,

and I{·} denotes the indicator function, which takes the value one if a nonzero number of lags selected,

using the Schwarz Information Criterion (SIC), and zero otherwise. Note that all models and lag orders

are selected individually for each stock prior to the construction of each new prediction, at each point in

time as we iterate through the ex-ante sample period. Our benchmark model sets γ = 0, so that no factors

are included in the forecasting equation. Factors are estimated using variable selection and dimension

reduction methods. These include: AR+PCA, where factors are estimated using PCA applied to our

entire return dataset; AR+SPCA, where factors are estimated using SPCA applied to our entire return

dataset; and AR+HT, where factors are estimated using PCA applied to a subset of our return variable

dataset that is selected using hard thresholding (HT), as discussed in Bai and Ng (2008). Specifically, for

our AR+HT model, for each variable in our dataset, say X, and for each forecast horizon, h, we perform

regressions of rt+h on lags of rt and on Xi,t, where Xi,t is a scalar variable in X, for i = 1, ..., 390, and

lags of rt are selected using the SIC. Finally, let ti denote the t statistic associated with Xit−h in the

regression, and select variable Xit if |ti| > 1.28. Then, utilize PCA to estimate factors for inclusion in

the above forecasting equation, given the set of variables selected after iterating through all candidate

variables in X. Should less than 20 variables be selected, use the AR(SIC) model. As models are re-

estimated at each point in time, this approach is a hybrid approach, in the sense that some models may

include factors as regressors, while others may be simple AR(SIC) models. Note that in our experiments,

less than 10% of the total number of forecasting periods involved replacing the AR+HT model with our

AR(SIC) benchmark.

Results based on the above experiment are presented for three different forecasting periods, including:

February 28, 2014 - Februray 25, 2016 (Subsample1), Februray 25, 2016 - January 24, 2019 (Subsample2),

and February 28, 2014 - January 24, 2019 (Full Sample). In addition to evaluating the performance our

our 4 individual models (i.e., the benchmark AR(SIC), PCA, SPCA, and AR-HT models, we evaluate the

performance of two different model combinations in which forecasts are averaged, including: Combination

1 – AR+PCA and AR+SPCA, and Combination 2 – AR+PCA and AR+SPCA and AR+HT. All reported

results are based on mean square forecast errors calculated across a given sample period, for a given

variable and forecast horizon. Our models are summarized in Table 1, while the forecast combinations

analyzed are given in Table 2. Tables 3 and 4 summarize results based on the comparison of our individual

models, while Tables 5 and 6 present summary findings based on forecasts constructed using our forecast
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combinations. Our findings can be summarized as follows.

Turning first to Table 3, notice that the AR+HT model clearly performs ‘best’ for the majority of

stocks in our sample, regardless of sample period or forecast horizon. Moreover, the pure AR benchmark

clearly performs worst, as can be seen by noting the 391 minus the sum of all ‘wins’ across a given row of

entries in this table gives the number of stocks for which the AR models ‘wins’. This finding indicates that

more complicated forecasting models outperform simple AR (or random walk) type models, as claimed

by Lo and MacKinlay (1999). Second, note that the ‘average ranking’ of the AR+HT model is always

lower than that of any other model, as can be seen by examining the entries in Table 4. This result

supports our findings from Table 3. Third, forecast combination yields substantially more ‘wins’ than the

very best of our 4 ‘non-combination’ models, as can be seen upon inspection of the results presented in

Table 5. Finally, the results in Table 6 indicate that the ‘average ranking’ of Combination 2 (i.e., our best

combination method) is as close to a perfect ranking of ‘1’ as is the ‘average ranking’ of AR-HT when the

latter model is compared solely with our other three non-combination models.

7. Closing Remarks

In this paper we discuss various developments in modelling and forecasting financial time series models

that have been made over the last 25 years, for use when analyzing small,large, and very large datasets.

Models discussed range from discrete GARCH models to machine learning models based on the least

absolute shrinkage and selection operator and the elastic net. We also briefly discuss earlier and simpler

methods ranging from the use of surveys to the specification of simple autoregressive regression models.

Finally, we present the results of a small empirical illustration in which returns for a number of stocks

are predicted using simple AR type models as well various machine learning type models.
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Table 1: Models Used in Prediction Experiments∗

Model Description

Model 1: AR(SIC)/RW Autoregressive model with lag(s) selected by the Schwarz infor-

mation criterion/ Random walk model.

Model 2: AR+PCA AR(SIC) model augmented with PCA type factors constructed

using our entire return dataset.

Model 3: AR+SPCA AR(SIC) model augmented with SPCA type factors constructed

using our entire return dataset.

Model 4: AR+HT AR(SIC) model augmented with HT type factors constructed

using PCA applied to a subset of our return dataset that is

selected using the hard thresholding method.

∗Notes: This table includes brief descriptions of the 4 forecasting models used in daily predictions of returns. For complete details refer

to Section 6.

Table 2: Combination Methods Used in Prediction Experiments∗

Model Description

Combination 1 Average of two single models including AR+PCA, AR+SPCA.

Combination 2 Average of all three single models including AR+PCA,

AR+SPCA, AR+HT.

∗Notes: Entries in this table describe the forecast combinations used in our forecast combination experiments.
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Table 3: Comparison of Forecasting Models by Number of Stocks with Lowest MSFE Across Forecast Horizons and

Subsamples∗

AR+PCA AR+SPCA AR+HT

Full Sample h=1 46 78 267

(2014-02-28 - 2019-01-24) h=5 54 71 266

h=20 76 53 262

Subsample 1 h=1 47 131 213

(2014-02-28 - 2016-02-25) h=5 63 64 264

h=20 73 46 272

Subsample 2 h=1 72 54 265

(2016-02-26 - 2019-01-24) h=5 57 84 250

h=20 85 68 238

∗Notes: See notes to Tables 1 and 2. Entries in this tables are the number of stocks (out of a total of 361) for which each

forecasting model (AR-PCA, AR+SPCA, AR+HT) has the lowest MSFE at forecast horizons of 1, 5, and 20 days ahead,

across the full sample and two subsamples. Note that as there are 391 stocks in total, when summing entries across rows

yields a value of less than 391, this indicates that the pure AR benchmark model “wins” for a number of stocks. The entire

sample period is from 2014-02-28 to 2019-01-24, with the first subsample from 2014-02-28 to 2016-02-25, and the second

subsample from 2016-02-25 to 2019-01-24. For complete details, refer to Section 6.
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Table 4: Table of Average Rankings of All Single Models Across Forecast Horizons and Subsamples∗

AR+PCA AR+SPCA AR+HT

Full Sample h=1 2.28 2.11 1.61

(2014-02-28 - 2019-01-24) h=5 2.32 2.07 1.61

h=20 2.05 2.33 1.62

Subsample 1 h=1 2.23 1.94 1.83

(2014-02-28 - 2016-02-25) h=5 2.18 2.24 1.58

h=20 2.11 2.36 1.53

Subsample 2 h=1 2.06 2.33 1.61

(2016-02-26 - 2019-01-24) h=5 2.38 1.95 1.67

h=20 2.00 2.26 1.74

∗Notes: See notes to Table 3. Entries in this table are average rankings for all forecasting models (AR+PCA, AR+SPCA,

AR+HT) at forecast horizons of 1, 5, and 20 days ahead, across the full sample and two subsamples, with ”1” being the best

model.

Table 5: Comparison of Forecasts in Model Combinations by Number of Stocks with Lowest MSFE Across Forecast Horizons

and Subsamples∗

Comb 1 Comb 2 Best Single

Full Sample h=1 40 259 92

(2014-02-28 - 2019-01-24) h=5 49 248 94

h=20 68 266 57

Subsample 1 h=1 53 199 139

(2014-02-28 - 2016-02-25) h=5 55 257 79

h=20 99 6 286

Subsample 2 h=1 67 273 51

(2016-02-26 - 2019-01-24) h=5 124 51 216

h=20 75 249 67

∗Notes: See notes to Table 4. Entries in this table are the number of stocks for which each model combination or individual

model (called Best Single) has the lowest MSFE among all models at forecast horizons of 1, 5, and 20 days ahead, across the

full sample and two subsamples. The model combinations are detailed in Table 2.
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Table 6: Table of Average Rankings of All Single Models Across Forecast Horizons and Subsamples∗

Comb1 Comb2 Best Single

Full Sample h=1 2.28 1.62 2.10

(2014-02-28 - 2019-01-24) h=5 2.35 1.62 2.03

h=20 2.10 1.57 2.33

Subsample 1 h=1 2.18 1.87 1.95

(2014-02-28 - 2016-02-25) h=5 2.21 1.57 2.22

h=20 2.48 1.99 1.53

Subsample2 h=1 2.08 1.57 2.35

(2016-02-26 - 2019-01-24) h=5 2.32 1.89 1.79

h=20 2.03 1.69 2.28

∗Notes: See notes to Table 5. Entries in this table are average rankings, as discussed in the footnote to Table 4.
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